Facile Synthesis of Li7P2S8I for All-Solid-State Lithium Batteries

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2025-03-25 DOI:10.1021/acsaem.5c00219
Haichuan Yu, Jing Yang, Gaozhan Liu, Panlei Cao, Junjie Jia and Xiayin Yao*, 
{"title":"Facile Synthesis of Li7P2S8I for All-Solid-State Lithium Batteries","authors":"Haichuan Yu,&nbsp;Jing Yang,&nbsp;Gaozhan Liu,&nbsp;Panlei Cao,&nbsp;Junjie Jia and Xiayin Yao*,&nbsp;","doi":"10.1021/acsaem.5c00219","DOIUrl":null,"url":null,"abstract":"<p >Sulfide electrolyte Li<sub>7</sub>P<sub>2</sub>S<sub>8</sub>I has received extensive attention on account of its high ionic conductivity and remarkable stability. However, a long processing time and sophisticated synthesis procedures are generally required. In this study, Li<sub>7</sub>P<sub>2</sub>S<sub>8</sub>I is synthesized through the combination of melt-quenching and high-energy ball milling, significantly reducing ball milling time compared with the conventional mechanical milling method. The generation of highly conductive <i>thio</i>-LISICON II phase facilitates the fast Li<sup>+</sup> transportation. The optimized Li<sub>7</sub>P<sub>2</sub>S<sub>8</sub>I exhibits a favorable powder cold-pressed ionic conductivity of 1.51 mS cm<sup>–1</sup> and a relatively high critical current density of 0.55 mA cm<sup>–2</sup>. The resultant LiCoO<sub>2</sub>/Li<sub>7</sub>P<sub>2</sub>S<sub>8</sub>I-700/Li all-solid-state battery delivers an initial reversible capacity of 119.1 mAh g<sup>–1</sup> with a capacity retention of 91.5% after 20 cycles under 0.1 C. This study introduces an efficient approach for the rapid synthesis of Li<sub>7</sub>P<sub>2</sub>S<sub>8</sub>I for all-solid-state lithium batteries.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4586–4591 4586–4591"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00219","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfide electrolyte Li7P2S8I has received extensive attention on account of its high ionic conductivity and remarkable stability. However, a long processing time and sophisticated synthesis procedures are generally required. In this study, Li7P2S8I is synthesized through the combination of melt-quenching and high-energy ball milling, significantly reducing ball milling time compared with the conventional mechanical milling method. The generation of highly conductive thio-LISICON II phase facilitates the fast Li+ transportation. The optimized Li7P2S8I exhibits a favorable powder cold-pressed ionic conductivity of 1.51 mS cm–1 and a relatively high critical current density of 0.55 mA cm–2. The resultant LiCoO2/Li7P2S8I-700/Li all-solid-state battery delivers an initial reversible capacity of 119.1 mAh g–1 with a capacity retention of 91.5% after 20 cycles under 0.1 C. This study introduces an efficient approach for the rapid synthesis of Li7P2S8I for all-solid-state lithium batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全固态锂电池用Li7P2S8I的简易合成
硫化物电解质Li7P2S8I因其高离子电导率和优异的稳定性而受到广泛关注。然而,通常需要较长的加工时间和复杂的合成程序。本研究采用熔体淬火与高能球磨相结合的方法合成Li7P2S8I,与常规机械铣削方法相比,球磨时间明显缩短。高导电性硫代lisicon II相的生成促进了Li+的快速传输。优化后的Li7P2S8I具有良好的粉末冷压离子电导率(1.51 mS cm-1)和较高的临界电流密度(0.55 mA cm-2)。所得LiCoO2/Li7P2S8I-700/Li全固态电池的初始可逆容量为119.1 mAh g-1,在0.1℃下循环20次后容量保持率为91.5%。本研究介绍了一种快速合成Li7P2S8I全固态锂电池的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Misinformation in the media: global coverage of GMOs 2019-2021. Understanding Catalyst Design of High-Entropic Non-Noble Metal Alloys for the Oxygen Evolution Reaction in Acidic Media Recent Progress in the Design of Functional Carbon Materials for Energy Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1