Water-assisted clean electro-preparation of Co3Fe7 in molten salts: its enhanced ferromagnetic properties and hydrogen evolution rate†

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2025-03-05 DOI:10.1039/d4gc05961a
Shengxi Zhao , Kaiyu Xie , Ali Reza Kamali
{"title":"Water-assisted clean electro-preparation of Co3Fe7 in molten salts: its enhanced ferromagnetic properties and hydrogen evolution rate†","authors":"Shengxi Zhao ,&nbsp;Kaiyu Xie ,&nbsp;Ali Reza Kamali","doi":"10.1039/d4gc05961a","DOIUrl":null,"url":null,"abstract":"<div><div>A clean and efficient method for synthesizing intermetallic Co<sub>3</sub>Fe<sub>7</sub> is reported, based on water-assisted molten salt electrolysis employing the CoFe<sub>2</sub>O<sub>4</sub> electrode, fabricated through the thermo-mechanochemical treatment of iron and cobalt oxides. The electrolysis is conducted at a cell voltage of 1.5 V, achieving an energy consumption of 1.47 kW h kg<sup>−1</sup>. Upon formation, the synthesized Co<sub>3</sub>Fe<sub>7</sub> serves as an electrode for catalytic hydrogen production, demonstrating a current density of 91.7 mA cm<sup>−2</sup>. These performances are compared with those of electrolytic Fe (1.49 kW h kg<sup>−1</sup> and 96.4 mA cm<sup>−2</sup>) and electrolytic Co (1.30 kW h kg<sup>−1</sup> and 40.8 mA cm<sup>−2</sup>), both prepared under the same electrolysis potential but with different current–time profiles. The electrolytic Co<sub>3</sub>Fe<sub>7</sub> exhibits superior ferromagnetic properties, with saturation magnetization, remanent magnetization and coercivity values of 157.0 emu g<sup>−1</sup>, 4.3 emu g<sup>−1</sup> and 48.9 Oe, respectively, surpassing values reported in the literature for Fe–Co alloys. The findings suggest a sustainable approach for the green synthesis of Co<sub>3</sub>Fe<sub>7</sub> with enhanced ferromagnetic properties. Additionally, the electrolytic Fe and Co<sub>3</sub>Fe<sub>7</sub> show promise as electrode materials for molten salt hydrogen production.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 16","pages":"Pages 4320-4329"},"PeriodicalIF":9.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225002201","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A clean and efficient method for synthesizing intermetallic Co3Fe7 is reported, based on water-assisted molten salt electrolysis employing the CoFe2O4 electrode, fabricated through the thermo-mechanochemical treatment of iron and cobalt oxides. The electrolysis is conducted at a cell voltage of 1.5 V, achieving an energy consumption of 1.47 kW h kg−1. Upon formation, the synthesized Co3Fe7 serves as an electrode for catalytic hydrogen production, demonstrating a current density of 91.7 mA cm−2. These performances are compared with those of electrolytic Fe (1.49 kW h kg−1 and 96.4 mA cm−2) and electrolytic Co (1.30 kW h kg−1 and 40.8 mA cm−2), both prepared under the same electrolysis potential but with different current–time profiles. The electrolytic Co3Fe7 exhibits superior ferromagnetic properties, with saturation magnetization, remanent magnetization and coercivity values of 157.0 emu g−1, 4.3 emu g−1 and 48.9 Oe, respectively, surpassing values reported in the literature for Fe–Co alloys. The findings suggest a sustainable approach for the green synthesis of Co3Fe7 with enhanced ferromagnetic properties. Additionally, the electrolytic Fe and Co3Fe7 show promise as electrode materials for molten salt hydrogen production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水辅助清洁电制备熔盐中的 Co3Fe7:增强的铁磁特性和氢进化率†。
本文报道了一种清洁高效的合成金属间化合物Co3Fe7的方法,该方法基于水辅助熔盐电解,采用CoFe2O4电极,通过对铁和钴氧化物进行热机械化学处理。电解在1.5 V的电池电压下进行,能耗为1.47 kW h kg−1。形成后,合成的Co3Fe7作为催化制氢的电极,显示出91.7 mA cm−2的电流密度。这些性能与电解Fe (1.49 kW h kg−1和96.4 mA cm−2)和电解Co (1.30 kW h kg−1和40.8 mA cm−2)的性能进行了比较,两者都是在相同的电解电位下制备的,但电流时间分布不同。电解后的Co3Fe7表现出优异的铁磁性能,饱和磁化强度、剩余磁化强度和矫顽力分别为157.0、4.3和48.9 ω,超过了Fe-Co合金的文献报道值。这一发现为绿色合成具有增强铁磁性的Co3Fe7提供了一种可持续的方法。此外,电解铁和Co3Fe7显示出作为熔盐制氢电极材料的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Electrocatalytic conversion of nitrophenol pollutants to value-added products coupled with in situ separation via cation shuttling A green sulfidation roasting–flotation process using desulfurized gypsum for sustainable copper recovery and waste valorization An ‘enhancement-tandem effect’ induced by the ‘P vacancy–Cr dopant structure’ for optimizing the energy barrier and reaction pathway for alkaline HER The stepwise construction of polyoxovanadate-based Zn-MOF nanoparticles with Lewis acid sites for the one-pot synthesis of N-heterocycles in air Interface-engineered, multifunctional wood composites via recyclable solvent processing for ultra-durable triboelectric energy harvesting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1