Enhanced corrosion resistance of an eco-friendly MXene composite coating with self-healing performance†

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2025-03-05 DOI:10.1039/d4gc06219a
Xiaoqing Ma , Tiange Wang , Baolong Gong , Jiale Hou , Shuxian Ji , Huaijie Cao
{"title":"Enhanced corrosion resistance of an eco-friendly MXene composite coating with self-healing performance†","authors":"Xiaoqing Ma ,&nbsp;Tiange Wang ,&nbsp;Baolong Gong ,&nbsp;Jiale Hou ,&nbsp;Shuxian Ji ,&nbsp;Huaijie Cao","doi":"10.1039/d4gc06219a","DOIUrl":null,"url":null,"abstract":"<div><div>Though various kinds of self-healing composite coatings have been proposed for long-term corrosion protection of metals toward sustainable development, the construction of highly efficient and thin coatings <em>via</em> an eco-friendly and time-saving process still remains a challenge. Herein, by combining MXene with strong impermeability and tannic acid as a green corrosion inhibitor, a calcium myristate/MXene composite coating was designed for Al alloys. The resultant thin composite coating (∼21.59 μm) exhibited high corrosion resistance, with a decreased corrosion current density of 7.028 × 10<sup>−9</sup> A cm<sup>−2</sup> in a 3.5 wt% NaCl solution, as confirmed by electrochemical tests, surpassing the performances of calcium myristate and calcium myristate/MXene coatings without tannic acid. The self-healing capability was evaluated by electrochemical tests and the evolution of surface morphology of the scratched coating. The damaged MXene composite coating presented self-healing behavior, with a high self-healing efficiency of 99.53% after 8 days. The self-healing mechanism was attributed to the release of tannic acid from the damaged areas. In contrast to the complex functionalization and preparation process of organic coatings, the comprehensive advantages of this MXene composite coating outperformed those of previously reported self-healing MXene coatings. This work provides a facile strategy for constructing self-healing MXene coatings and expands the application potential of MXene.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 16","pages":"Pages 4369-4384"},"PeriodicalIF":9.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225002146","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Though various kinds of self-healing composite coatings have been proposed for long-term corrosion protection of metals toward sustainable development, the construction of highly efficient and thin coatings via an eco-friendly and time-saving process still remains a challenge. Herein, by combining MXene with strong impermeability and tannic acid as a green corrosion inhibitor, a calcium myristate/MXene composite coating was designed for Al alloys. The resultant thin composite coating (∼21.59 μm) exhibited high corrosion resistance, with a decreased corrosion current density of 7.028 × 10−9 A cm−2 in a 3.5 wt% NaCl solution, as confirmed by electrochemical tests, surpassing the performances of calcium myristate and calcium myristate/MXene coatings without tannic acid. The self-healing capability was evaluated by electrochemical tests and the evolution of surface morphology of the scratched coating. The damaged MXene composite coating presented self-healing behavior, with a high self-healing efficiency of 99.53% after 8 days. The self-healing mechanism was attributed to the release of tannic acid from the damaged areas. In contrast to the complex functionalization and preparation process of organic coatings, the comprehensive advantages of this MXene composite coating outperformed those of previously reported self-healing MXene coatings. This work provides a facile strategy for constructing self-healing MXene coatings and expands the application potential of MXene.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有自修复性能的环保型 MXene 复合涂层的耐腐蚀性能得到增强†。
虽然人们已经提出了各种自修复复合涂层来实现金属的长期防腐,但如何通过环保和省时的工艺来构建高效、薄的涂层仍然是一个挑战。本文将具有强抗渗性的MXene与单宁酸结合,作为绿色缓蚀剂,设计了肉豆酸钙/MXene铝合金复合涂层。电化学实验证实,复合涂层(~ 21.59 μm)具有较高的耐腐蚀性,在3.5 wt% NaCl溶液中,腐蚀电流密度降低了7.028 × 10−9 a cm−2,超过了肉豆酸钙和肉豆酸钙/MXene涂层的性能。通过电化学测试和表面形貌的变化来评价涂层的自修复能力。损伤后的MXene复合涂层表现出自愈行为,8天后自愈率高达99.53%。这种自愈机制归因于受损部位释放的单宁酸。与有机涂层复杂的功能化和制备过程相比,该MXene复合涂层的综合优势优于先前报道的自修复MXene涂层。本研究为构建自修复MXene涂层提供了一种简便的策略,拓展了MXene的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Electrocatalytic conversion of nitrophenol pollutants to value-added products coupled with in situ separation via cation shuttling A green sulfidation roasting–flotation process using desulfurized gypsum for sustainable copper recovery and waste valorization An ‘enhancement-tandem effect’ induced by the ‘P vacancy–Cr dopant structure’ for optimizing the energy barrier and reaction pathway for alkaline HER The stepwise construction of polyoxovanadate-based Zn-MOF nanoparticles with Lewis acid sites for the one-pot synthesis of N-heterocycles in air Interface-engineered, multifunctional wood composites via recyclable solvent processing for ultra-durable triboelectric energy harvesting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1