Sascha Caron, José Enrique García Navarro, María Moreno Llácer, Polina Moskvitina, Mats Rovers, Adrián Rubio Jímenez, Roberto Ruiz de Austri, Zhongyi Zhang
{"title":"Universal anomaly detection at the LHC: transforming optimal classifiers and the DDD method","authors":"Sascha Caron, José Enrique García Navarro, María Moreno Llácer, Polina Moskvitina, Mats Rovers, Adrián Rubio Jímenez, Roberto Ruiz de Austri, Zhongyi Zhang","doi":"10.1140/epjc/s10052-025-14087-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we present a novel approach to transform supervised classifiers into effective unsupervised anomaly detectors. The method we have developed, termed Discriminatory Detection of Distortions (DDD), enhances anomaly detection by training a discriminator model on both original and artificially modified datasets. We conducted a comprehensive evaluation of our models on the Dark Machines Anomaly Score Challenge channels and a search for 4-top quark events, demonstrating the effectiveness of our approach across various final states and beyond the Standard Model scenarios. We compare the performance of the DDD method with the Deep Robust One-Class Classification method (DROCC), which incorporates signals in the training process, and the Deep Support Vector Data Description (DeepSVDD) method, a well-established and well-performing method for anomaly detection. Results show that the effectiveness of each model varies by signal and channel, with DDD proving to be a very effective anomaly detector. We recommend the combined use of DeepSVDD and DDD for purely unsupervised applications, with the addition of flow models for improved performance when resources allow. Findings suggest that network architectures that excel in supervised contexts, such as the particle transformer with standard model interactions, also perform well as unsupervised anomaly detectors. We also show that with these methods, it is likely possible to recognize 4-top quark production as an anomaly without prior knowledge of the process. We argue that the Large Hadron Collider community can transform supervised classifiers into anomaly detectors to uncover potential new physical phenomena in each search.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 4","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14087-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14087-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present a novel approach to transform supervised classifiers into effective unsupervised anomaly detectors. The method we have developed, termed Discriminatory Detection of Distortions (DDD), enhances anomaly detection by training a discriminator model on both original and artificially modified datasets. We conducted a comprehensive evaluation of our models on the Dark Machines Anomaly Score Challenge channels and a search for 4-top quark events, demonstrating the effectiveness of our approach across various final states and beyond the Standard Model scenarios. We compare the performance of the DDD method with the Deep Robust One-Class Classification method (DROCC), which incorporates signals in the training process, and the Deep Support Vector Data Description (DeepSVDD) method, a well-established and well-performing method for anomaly detection. Results show that the effectiveness of each model varies by signal and channel, with DDD proving to be a very effective anomaly detector. We recommend the combined use of DeepSVDD and DDD for purely unsupervised applications, with the addition of flow models for improved performance when resources allow. Findings suggest that network architectures that excel in supervised contexts, such as the particle transformer with standard model interactions, also perform well as unsupervised anomaly detectors. We also show that with these methods, it is likely possible to recognize 4-top quark production as an anomaly without prior knowledge of the process. We argue that the Large Hadron Collider community can transform supervised classifiers into anomaly detectors to uncover potential new physical phenomena in each search.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.