Polarization-Driven Type-II and Z-Scheme Heterojunctions in GaN/ZrSO and GaN/ZrS2 for Enhanced Photocatalysis

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-04-13 DOI:10.1021/acs.jpcc.4c08602
Qiheng Ma, Xiaodong Hao, Cheng Wang, Jiahui Wang, Deqiang Yin, Shufang Ma, Bingshe Xu
{"title":"Polarization-Driven Type-II and Z-Scheme Heterojunctions in GaN/ZrSO and GaN/ZrS2 for Enhanced Photocatalysis","authors":"Qiheng Ma, Xiaodong Hao, Cheng Wang, Jiahui Wang, Deqiang Yin, Shufang Ma, Bingshe Xu","doi":"10.1021/acs.jpcc.4c08602","DOIUrl":null,"url":null,"abstract":"In this work, the structural stability, electronic properties, and photocatalytic performance of three heterostructures─nonpolar/nonpolar GaN/ZrS<sub>2</sub> and nonpolar/polar GaN/ZrSO with different polarization directions (P↑ and P↓)─were systematically investigated using first-principles calculations. The GaN/ZrS<sub>2</sub> heterostructure was found to form a direct Z-scheme junction, with efficient charge separation driven by a built-in electric field. This internal field enhances the redox potential, making the GaN/ZrS<sub>2</sub> heterostructure highly suitable for overall photocatalytic water splitting. In contrast, the P↓ GaN/ZrSO heterostructure was shown to exhibit type II band alignment, where the presence of an intrinsic polarization field from the ZrSO monolayer further boosts its hydrogen evolution efficiency. Both GaN/ZrS<sub>2</sub> and P↓ GaN/ZrSO heterostructures demonstrated strong light absorption in the visible spectrum and favorable band-edge positions for redox reactions. Thermodynamic calculations of Gibbs free energy confirmed that spontaneous water splitting can occur under neutral conditions for both systems. Additionally, dielectric function analysis revealed enhanced visible light absorption, especially in the P↓ GaN/ZrSO system. These results indicate that GaN-based heterostructures offer significant potential as efficient and stable photocatalysts for water splitting, with the ability to harness visible light and optimize charge carrier dynamics through polarization effects. This study highlights the promise of these heterostructures for advancing sustainable energy applications.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"6 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c08602","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the structural stability, electronic properties, and photocatalytic performance of three heterostructures─nonpolar/nonpolar GaN/ZrS2 and nonpolar/polar GaN/ZrSO with different polarization directions (P↑ and P↓)─were systematically investigated using first-principles calculations. The GaN/ZrS2 heterostructure was found to form a direct Z-scheme junction, with efficient charge separation driven by a built-in electric field. This internal field enhances the redox potential, making the GaN/ZrS2 heterostructure highly suitable for overall photocatalytic water splitting. In contrast, the P↓ GaN/ZrSO heterostructure was shown to exhibit type II band alignment, where the presence of an intrinsic polarization field from the ZrSO monolayer further boosts its hydrogen evolution efficiency. Both GaN/ZrS2 and P↓ GaN/ZrSO heterostructures demonstrated strong light absorption in the visible spectrum and favorable band-edge positions for redox reactions. Thermodynamic calculations of Gibbs free energy confirmed that spontaneous water splitting can occur under neutral conditions for both systems. Additionally, dielectric function analysis revealed enhanced visible light absorption, especially in the P↓ GaN/ZrSO system. These results indicate that GaN-based heterostructures offer significant potential as efficient and stable photocatalysts for water splitting, with the ability to harness visible light and optimize charge carrier dynamics through polarization effects. This study highlights the promise of these heterostructures for advancing sustainable energy applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强光催化的 GaN/ZrSO 和 GaN/ZrS2 中偏振驱动的 II 型和 Z 型异质结
本文利用第一原理计算系统地研究了三种异质结构--非极性/非极性GaN/ZrS2和非极性/极性GaN/ZrSO--不同极化方向(P↑和P↓)的结构稳定性、电子特性和光催化性能。研究发现,GaN/ZrS2 异质结构形成了一个直接的 Z 型结点,在内置电场的驱动下实现了高效的电荷分离。这种内电场增强了氧化还原电势,使 GaN/ZrS2 异质结构非常适合整体光催化水分离。相比之下,P↓ GaN/ZrSO 异质结构显示出第二类带排列,其中 ZrSO 单层的内在极化场进一步提高了其氢进化效率。GaN/ZrS2 和 P↓ GaN/ZrSO 异质结构在可见光谱中都表现出很强的光吸收能力,并且在氧化还原反应中具有有利的带边位置。吉布斯自由能的热力学计算证实,这两种体系都能在中性条件下发生自发水分裂。此外,介电函数分析表明可见光吸收增强,尤其是在 P↓ GaN/ZrSO 系统中。这些结果表明,基于氮化镓的异质结构具有利用可见光和通过极化效应优化电荷载流子动力学的能力,作为高效稳定的光催化剂在水分离方面具有巨大的潜力。这项研究凸显了这些异质结构在推进可持续能源应用方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
XAFS Investigation of Monometallic Catalysts (Au, Pt, Pd, Ru, Cu) on Ionic Liquid-Functionalized SBA-15: Structural Characterization and Catalytic Hydrogenation of p-Nitrophenol Role of Solid–Water Interaction and Film Thickness on Nanoscale Water Evaporation Using Molecular Dynamics Monitoring Gold Nanoparticle Formation by In Situ Transient Absorption Spectroscopy The Impact of Silanol Defects on the Properties of Zeolite-Based Microporous Water Elucidation of the Difference in the Volume Expansion Anisotropy between i- and n-type Silicon Pillars during the Lithiation Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1