Bias-variance decomposition knowledge distillation for medical image segmentation

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-04-12 DOI:10.1016/j.neucom.2025.130230
Xiangchun Yu , Longxiang Teng , Zhongjian Duan , Dingwen Zhang , Wei Pang , Miaomiao Liang , Jian Zheng , Liujin Qiu , Qing Xu
{"title":"Bias-variance decomposition knowledge distillation for medical image segmentation","authors":"Xiangchun Yu ,&nbsp;Longxiang Teng ,&nbsp;Zhongjian Duan ,&nbsp;Dingwen Zhang ,&nbsp;Wei Pang ,&nbsp;Miaomiao Liang ,&nbsp;Jian Zheng ,&nbsp;Liujin Qiu ,&nbsp;Qing Xu","doi":"10.1016/j.neucom.2025.130230","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge distillation essentially maximizes the mutual information between teacher and student networks. Typically, a variational distribution is introduced to maximize the variational lower bound. However, the heteroscedastic noises derived from this distribution are often unstable, leading to unreliable data-uncertainty modeling. Our research identifies that bias-variance coupling in knowledge distillation causes this instability. We thus propose Bias-variance dEcomposition kNowledge dIstillatioN (BENIN) approach. Initially, we use bias-variance decomposition to decouple these components. Subsequently, we design a lightweight Feature Frequency Expectation Estimation Module (FF-EEM) to estimate the student's prediction expectation, which helps compute bias and variance. Variance learning measures data uncertainty in the teacher's prediction. A balance factor addresses the bias-variance dilemma. Lastly, the bias-variance decomposition distillation loss enables the student to learn valuable knowledge while reducing noise. Experiments on Synapse and Lits17 medical-image-segmentation datasets validate BENIN's effectiveness. FF-EEM also mitigates high-frequency noise from high mask rates, enhancing data-uncertainty estimation and visualization. Our code is available at <span><span>https://github.com/duanzhongjian/BENIN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"638 ","pages":"Article 130230"},"PeriodicalIF":6.5000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225009026","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge distillation essentially maximizes the mutual information between teacher and student networks. Typically, a variational distribution is introduced to maximize the variational lower bound. However, the heteroscedastic noises derived from this distribution are often unstable, leading to unreliable data-uncertainty modeling. Our research identifies that bias-variance coupling in knowledge distillation causes this instability. We thus propose Bias-variance dEcomposition kNowledge dIstillatioN (BENIN) approach. Initially, we use bias-variance decomposition to decouple these components. Subsequently, we design a lightweight Feature Frequency Expectation Estimation Module (FF-EEM) to estimate the student's prediction expectation, which helps compute bias and variance. Variance learning measures data uncertainty in the teacher's prediction. A balance factor addresses the bias-variance dilemma. Lastly, the bias-variance decomposition distillation loss enables the student to learn valuable knowledge while reducing noise. Experiments on Synapse and Lits17 medical-image-segmentation datasets validate BENIN's effectiveness. FF-EEM also mitigates high-frequency noise from high mask rates, enhancing data-uncertainty estimation and visualization. Our code is available at https://github.com/duanzhongjian/BENIN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
偏方差分解知识蒸馏在医学图像分割中的应用
知识提炼本质上是最大化教师和学生网络之间的相互信息。通常,为了最大化变异下限,会引入一个变异分布。然而,从该分布中得出的异方差噪声往往不稳定,从而导致不可靠的数据不确定性建模。我们的研究发现,知识蒸馏中的偏差-方差耦合导致了这种不稳定性。因此,我们提出了偏差-方差分解知识蒸馏(BENIN)方法。首先,我们使用偏差-方差分解来解耦这些组件。随后,我们设计了一个轻量级的特征频率期望估计模块(FF-EEM)来估计学生的预测期望,这有助于计算偏差和方差。方差学习测量教师预测中的数据不确定性。平衡因子可解决偏差-方差两难问题。最后,偏差-方差分解蒸馏损失能让学生学到有价值的知识,同时减少噪音。在 Synapse 和 Lits17 医学影像分割数据集上的实验验证了 BENIN 的有效性。FF-EEM 还能降低高掩码率带来的高频噪声,增强数据不确定性估计和可视化。我们的代码见 https://github.com/duanzhongjian/BENIN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Dual perspective hierarchical alignment network for joint multimodal aspect-based sentiment analysis A functional neuron with thermal perception and energy regulation MPD-GS: Mask-guided point densification for Gaussian splatting NVFusion: Lightweight infrared and low-light night vision image fusion in dark environments Unrolling operator splitting in learning PDEs for object detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1