Single-atom catalysts confined in shell layer achieved by a modified top-down strategy for efficient CO2 reduction

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-04-10 DOI:10.1016/j.jcis.2025.137566
Dong Wei , Aihao Xu , Xiangyu Chen , Junjie Ma , Fang Huang , Haoran Wu , Yong Liu , Ruquan Ye , Minghui Zhu , Jing Xu
{"title":"Single-atom catalysts confined in shell layer achieved by a modified top-down strategy for efficient CO2 reduction","authors":"Dong Wei ,&nbsp;Aihao Xu ,&nbsp;Xiangyu Chen ,&nbsp;Junjie Ma ,&nbsp;Fang Huang ,&nbsp;Haoran Wu ,&nbsp;Yong Liu ,&nbsp;Ruquan Ye ,&nbsp;Minghui Zhu ,&nbsp;Jing Xu","doi":"10.1016/j.jcis.2025.137566","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature pyrolysis is a primary method for synthesizing single-atom catalysts (SACs). However, this method accelerates the migration of metal atoms within the solid support, leading to low atom utilization. Herein, we report a novel top-down synthesis strategy wherein surface-sintered nickel sulfide (NiS<sub>2</sub>) nanoparticles (NPs) are in situ atomized into single atoms, achieving confinement of the single-atom catalyst within the shell layer and synthesizing a high-performance single-atom catalyst. Systematic investigations indicate that driven by strong interactions between metal atoms and the support, the NiS<sub>2</sub> NPs on the surface of the support atomize into single Ni atoms, which are predominantly distributed on the support surface, thus enhancing the accessibility of the active sites. Furthermore, theoretical calculations indicate that introducing S atoms into the second coordination shell around Ni atoms significantly reduces the activation energy of the CO<sub>2</sub> reduction reaction, thereby enhancing the catalytic performance of the single-atom catalyst. In the flow cell, the Ni single-atom catalyst achieving nearly 100% Faradaic efficiency for CO (FE<sub>CO</sub>) over a wide potential range of −0.5 to −1.3 V versus reversible hydrogen electrode (<em>vs</em>. RHE). At −1.6 V <em>vs</em>. RHE, the partial current density for CO reaches a maximum of 709 mA cm<sup>−2</sup> (turnover frequency of 28.67 s<sup>−1</sup>) with a FE<sub>CO</sub> of 95.9%.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"693 ","pages":"Article 137566"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725009579","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature pyrolysis is a primary method for synthesizing single-atom catalysts (SACs). However, this method accelerates the migration of metal atoms within the solid support, leading to low atom utilization. Herein, we report a novel top-down synthesis strategy wherein surface-sintered nickel sulfide (NiS2) nanoparticles (NPs) are in situ atomized into single atoms, achieving confinement of the single-atom catalyst within the shell layer and synthesizing a high-performance single-atom catalyst. Systematic investigations indicate that driven by strong interactions between metal atoms and the support, the NiS2 NPs on the surface of the support atomize into single Ni atoms, which are predominantly distributed on the support surface, thus enhancing the accessibility of the active sites. Furthermore, theoretical calculations indicate that introducing S atoms into the second coordination shell around Ni atoms significantly reduces the activation energy of the CO2 reduction reaction, thereby enhancing the catalytic performance of the single-atom catalyst. In the flow cell, the Ni single-atom catalyst achieving nearly 100% Faradaic efficiency for CO (FECO) over a wide potential range of −0.5 to −1.3 V versus reversible hydrogen electrode (vs. RHE). At −1.6 V vs. RHE, the partial current density for CO reaches a maximum of 709 mA cm−2 (turnover frequency of 28.67 s−1) with a FECO of 95.9%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单原子催化剂限制在壳层通过改进的自顶向下策略有效地减少二氧化碳
高温热解是合成单原子催化剂(SAC)的主要方法。然而,这种方法会加速金属原子在固体载体内的迁移,导致原子利用率低下。在本文中,我们报告了一种自上而下的新型合成策略,即将表面烧结的硫化镍(NiS2)纳米颗粒(NPs)原位原子化为单原子,实现了单原子催化剂在壳层内的封闭,合成出高性能的单原子催化剂。系统研究表明,在金属原子与载体之间强烈相互作用的驱动下,载体表面的 NiS2 NPs 原子化为单个 Ni 原子,这些单个 Ni 原子主要分布在载体表面,从而提高了活性位点的可达性。此外,理论计算表明,将 S 原子引入 Ni 原子周围的第二配位层可显著降低 CO2 还原反应的活化能,从而提高单原子催化剂的催化性能。在流动池中,相对于可逆氢电极(vs. RHE),镍单原子催化剂在 -0.5 至 -1.3 V 的宽电位范围内对 CO 的法拉第效率(FECO)接近 100%。在-1.6 V(相对于可逆氢电极)时,一氧化碳的部分电流密度达到最大值 709 mA cm-2(周转频率为 28.67 s-1),FECO 为 95.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1