Transport Properties in ZnO/ZnCdO Heterostructure with Spin–Orbit Interaction: Effect of In-Plane Magnetic Field & Delta Potential

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY International Journal of Theoretical Physics Pub Date : 2025-04-14 DOI:10.1007/s10773-025-05963-1
M. Karunakaran, Abdullah N. Alodhayb, Khalid E. Alzahrani, V. Pazhanivelu, L. Bruno Chandrasekar, Lalitha Gnanasekaran, Madhappan Santhamoorthy, Saravanan Pandiaraj, P. Shunmuga Sundaram
{"title":"Transport Properties in ZnO/ZnCdO Heterostructure with Spin–Orbit Interaction: Effect of In-Plane Magnetic Field & Delta Potential","authors":"M. Karunakaran,&nbsp;Abdullah N. Alodhayb,&nbsp;Khalid E. Alzahrani,&nbsp;V. Pazhanivelu,&nbsp;L. Bruno Chandrasekar,&nbsp;Lalitha Gnanasekaran,&nbsp;Madhappan Santhamoorthy,&nbsp;Saravanan Pandiaraj,&nbsp;P. Shunmuga Sundaram","doi":"10.1007/s10773-025-05963-1","DOIUrl":null,"url":null,"abstract":"<div><p>The electron tunneling in the ZnO/ZnCdO resonant tunnel barrier is theoretically investigated to study the role of the in-plane magnetic field. The transfer matrix method is applied to understand the effect of spin–orbit interaction for various magnetic fields. The Dresselhaus spin–orbit interaction and the spin-dependent Zeeman splitting result in the spin-separation in this heterostructure. The externally applied in-plane magnetic field enhances the energy separation between the spin components. The observed dwell time is in the order of microseconds. As the magnetic field increases, the degree of spin polarization enhances and one can obtain a high degree of spin –polarization at a high magnetic field. The energy of resonance shifts to a high value as the height of the delta potential increases. The degree of spin-polarization also depends on the delta potential.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05963-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electron tunneling in the ZnO/ZnCdO resonant tunnel barrier is theoretically investigated to study the role of the in-plane magnetic field. The transfer matrix method is applied to understand the effect of spin–orbit interaction for various magnetic fields. The Dresselhaus spin–orbit interaction and the spin-dependent Zeeman splitting result in the spin-separation in this heterostructure. The externally applied in-plane magnetic field enhances the energy separation between the spin components. The observed dwell time is in the order of microseconds. As the magnetic field increases, the degree of spin polarization enhances and one can obtain a high degree of spin –polarization at a high magnetic field. The energy of resonance shifts to a high value as the height of the delta potential increases. The degree of spin-polarization also depends on the delta potential.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有自旋-轨道相互作用的ZnO/ZnCdO异质结构的输运性质:面内磁场和δ势的影响
对 ZnO/ZnCdO 共振隧道势垒中的电子隧道效应进行了理论研究,以探讨面内磁场的作用。应用转移矩阵法了解了不同磁场下自旋轨道相互作用的影响。德雷斯豪斯自旋轨道相互作用和自旋相关的泽曼分裂导致了这种异质结构中的自旋分离。外部施加的面内磁场增强了自旋成分之间的能量分离。观察到的驻留时间为微秒量级。随着磁场的增大,自旋极化程度也随之增强,在高磁场下可以获得高度的自旋极化。随着德尔塔电势高度的增加,共振能量也会向高值移动。自旋极化的程度也取决于三角电位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
期刊最新文献
Effect of Rotation on Interband Light Absorption of a 2D Quantum Ring: Analytical Study Monte Carlo Study on the Magnetization Plateaus and Thermal Stability of Nested Borospherene Nanostructures Monte Carlo Simulations of Magnetic Behavior in C60 and Dimeric (C60)2 Fullerenes: A Comparative Study Using the Blume-Emery-Griffiths Model On Fermi Quantum Markov Chains Dynamical Behaviors of the Interaction of Solitons, Breathers and Rogue Waves in the (1+1)-dimensional Ito Equation with the Nonzero Constant Background
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1