Blockchain-Enabled Decentralized Services and Networks: Assessing Roles and Impacts

Xintong Ling;Yuwei Le;Shiyi Chen;Jiaheng Wang;Xiaoyang Zhou
{"title":"Blockchain-Enabled Decentralized Services and Networks: Assessing Roles and Impacts","authors":"Xintong Ling;Yuwei Le;Shiyi Chen;Jiaheng Wang;Xiaoyang Zhou","doi":"10.1109/JSAC.2025.3560044","DOIUrl":null,"url":null,"abstract":"The rapid evolution of blockchain has established it as a critical enabler for decentralized zero-trust services and networks. Without relying on traditional trust mechanisms such as pre-established mutual trust or central authentication, blockchain facilitates trust-free services via smart contract. Smart contracts offer verifiable software trust for various blockchain-enabled services (BESs) while protecting participants’ interests. However, the impact of blockchain on BES remains underexplored and unclear. In this work, we consider a general BES framework suitable for diverse decentralized zero-trust services and assess the role of blockchain in BES. We first build an <inline-formula> <tex-math>$M/G/1$ </tex-math></inline-formula>-type queuing model for BES and establish the stability conditions using matrix analytic methods. Based on the stability conditions, we identify the blockchain scalability and server capability as two critical bottlenecks of BES. We further use a tandem queuing model to describe the BES latency of the assembling and service phases. We analytically characterize the properties such as the convexity of service-phase latency with respect to traffic intensity, and highlight the BES pooling effects from traffic offloading and resource sharing. At last, we verify our conclusions through simulations and explore potential pathways for more efficient BES frameworks.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 6","pages":"2141-2154"},"PeriodicalIF":17.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10964770/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid evolution of blockchain has established it as a critical enabler for decentralized zero-trust services and networks. Without relying on traditional trust mechanisms such as pre-established mutual trust or central authentication, blockchain facilitates trust-free services via smart contract. Smart contracts offer verifiable software trust for various blockchain-enabled services (BESs) while protecting participants’ interests. However, the impact of blockchain on BES remains underexplored and unclear. In this work, we consider a general BES framework suitable for diverse decentralized zero-trust services and assess the role of blockchain in BES. We first build an $M/G/1$ -type queuing model for BES and establish the stability conditions using matrix analytic methods. Based on the stability conditions, we identify the blockchain scalability and server capability as two critical bottlenecks of BES. We further use a tandem queuing model to describe the BES latency of the assembling and service phases. We analytically characterize the properties such as the convexity of service-phase latency with respect to traffic intensity, and highlight the BES pooling effects from traffic offloading and resource sharing. At last, we verify our conclusions through simulations and explore potential pathways for more efficient BES frameworks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
区块链支持的去中心化服务和网络:评估作用和影响
区块链的快速发展使其成为去中心化零信任服务和网络的关键推动者。区块链不依赖传统的信任机制,如预先建立的相互信任或中央认证,通过智能合约促进无信任服务。智能合约为各种支持区块链的服务(BESs)提供可验证的软件信任,同时保护参与者的利益。然而,b区块链对BES的影响仍未得到充分探索和明确。在这项工作中,我们考虑了一个适用于各种分散零信任服务的通用BES框架,并评估了区块链在BES中的作用。首先建立了BES的$M/G/1$型排队模型,并利用矩阵分析法建立了稳定性条件。基于稳定性条件,我们确定区块链可伸缩性和服务器能力是BES的两个关键瓶颈。我们进一步使用串联排队模型来描述装配和服务阶段的BES延迟。我们分析了服务阶段延迟相对于流量强度的凹凸性等特性,并强调了流量卸载和资源共享带来的BES池效应。最后,我们通过模拟验证了我们的结论,并探索了更高效的BES框架的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Communications Society Information Guest Editorial: The Future of Wi-Fi and Wireless Technologies in Unlicensed Spectra IEEE Journal on Selected Areas in Communications Publication Information IEEE Communications Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1