Altering the Symmetry of Fe–N–C by Axial Cl-Mediation for High-Performance Zinc–Air Batteries

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-04-15 DOI:10.1002/anie.202504923
Mengni Liu, Yuxiao Liu, Xia Zhang, Linfeng Li, Xinying Xue, Muhammad Humayun, Haowei Yang, Libo Sun, Mohamed Bououdina, Jianrong Zeng, Deli Wang, Rony Snyders, Dingsheng Wang, Xin Wang, Chundong Wang
{"title":"Altering the Symmetry of Fe–N–C by Axial Cl-Mediation for High-Performance Zinc–Air Batteries","authors":"Mengni Liu,&nbsp;Yuxiao Liu,&nbsp;Xia Zhang,&nbsp;Linfeng Li,&nbsp;Xinying Xue,&nbsp;Muhammad Humayun,&nbsp;Haowei Yang,&nbsp;Libo Sun,&nbsp;Mohamed Bououdina,&nbsp;Jianrong Zeng,&nbsp;Deli Wang,&nbsp;Rony Snyders,&nbsp;Dingsheng Wang,&nbsp;Xin Wang,&nbsp;Chundong Wang","doi":"10.1002/anie.202504923","DOIUrl":null,"url":null,"abstract":"<p>Fe–N–C catalyst is acknowledged as a promising alternative for the state-of-the-art Pt/C in oxygen reduction reaction (ORR) toward cutting-edge electrochemical energy conversion/storage applications. Herein, a “Cl-mediation” strategy is proposed on Fe–N–C for modulating the catalyst's electronic structure toward achieving remarkable ORR activity. By coordinating axial Cl atoms to iron phthalocyanine (FePc) molecules on carbon nanotubes (CNTs) matrix, a Cl-modulated Fe–N–C (FePc-Cl-CNTs) catalyst is synthesized. The as-prepared FePc-Cl-CNTs exhibit an improved ORR activity with a half-wave potential of 0.91 V versus RHE in alkaline solution, significantly outperforming the parent FePc-CNTs (0.88 V versus RHE). The advanced nature of the as-prepared FePc-Cl-CNTs is evidenced by a configured high-performance rechargeable Zn–air battery, which operates stably for over 150 h. The experiments and density functional theory calculations unveil that axial Cl atoms induce the transformation of FePc from its original D<sub>4h</sub> to C<sub>4v</sub> symmetry, effectively altering the electrons distribution around the Fe-center, by which it optimizes *OH desorption and subsequently boosts the reaction kinetics. This work paves ways for resolving the dilemma of Fe–N–C catalysts’ exploration via engineering Fe–N–C configuration.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 26","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202504923","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fe–N–C catalyst is acknowledged as a promising alternative for the state-of-the-art Pt/C in oxygen reduction reaction (ORR) toward cutting-edge electrochemical energy conversion/storage applications. Herein, a “Cl-mediation” strategy is proposed on Fe–N–C for modulating the catalyst's electronic structure toward achieving remarkable ORR activity. By coordinating axial Cl atoms to iron phthalocyanine (FePc) molecules on carbon nanotubes (CNTs) matrix, a Cl-modulated Fe–N–C (FePc-Cl-CNTs) catalyst is synthesized. The as-prepared FePc-Cl-CNTs exhibit an improved ORR activity with a half-wave potential of 0.91 V versus RHE in alkaline solution, significantly outperforming the parent FePc-CNTs (0.88 V versus RHE). The advanced nature of the as-prepared FePc-Cl-CNTs is evidenced by a configured high-performance rechargeable Zn–air battery, which operates stably for over 150 h. The experiments and density functional theory calculations unveil that axial Cl atoms induce the transformation of FePc from its original D4h to C4v symmetry, effectively altering the electrons distribution around the Fe-center, by which it optimizes *OH desorption and subsequently boosts the reaction kinetics. This work paves ways for resolving the dilemma of Fe–N–C catalysts’ exploration via engineering Fe–N–C configuration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过轴向 Cl 介导改变 Fe-N-C 的对称性以制造高性能锌-空气电池
Fe-N-C催化剂被认为是氧还原反应(ORR)中最先进的Pt/C的有前途的替代品,可用于尖端的电化学能量转换/存储应用。本文提出了一种“cl -调解”策略,用于Fe-N-C调节催化剂的电子结构,以获得显着的ORR活性。通过将轴向cl原子配位到碳纳米管(CNTs)基体上的酞菁铁(FePc)分子上,合成了一种cl调制的Fe-N-C (FePc- cl -CNTs)催化剂。制备的FePc-Cl-CNTs在碱性溶液中表现出更好的ORR活性,相对于RHE的半波电位为0.91 V,显著优于母体FePc-CNTs(相对于RHE的半波电位为0.88 V)。制备的FePc- cl -碳纳米管具有先进的性能,可稳定运行超过150小时。实验和密度功能理论计算表明,轴向cl原子诱导FePc从原来的D4h对称转变为C4v对称,有效地改变了fe中心周围的电子分布,从而优化了*OH的脱附,从而提高了反应动力学。本研究为Fe-N-C的工程化配置解决Fe-N-C催化剂开发的困境铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Engineering Intralayer Anisotropy in Covalent Organic Frameworks Analyte‐Targeted Plasmonic Hotspots on Superlattice Mirror Enable Ultra‐Broad‐Range SERS Sensing of Acetylcholinesterase Non‐Radical Photocured 3D Printing of Liquid Crystal Elastomers Diazirines Beyond Photoaffinity Labeling: A Comprehensive Overview of Applications in Biological Sciences, Materials Chemistry, and NMR‐Spectroscopy A Fluorine-Free Chaotropic Electrolyte Promoting Zinc Peroxide Chemistry for Non-Alkaline Zinc-Air Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1