Min Woo Kim, Jong Min Lee, Chi-Young Jung, Jung-Eun Cha, Kwang Shik Myung, Nam Jin Lee, Nam Dong Kim and Jae Young Jung
{"title":"Thermally driven oxygen functionalization for durable Pt electrocatalysts in the oxygen reduction reaction†","authors":"Min Woo Kim, Jong Min Lee, Chi-Young Jung, Jung-Eun Cha, Kwang Shik Myung, Nam Jin Lee, Nam Dong Kim and Jae Young Jung","doi":"10.1039/D5TA01939G","DOIUrl":null,"url":null,"abstract":"<p >Enhancing the durability of platinum catalysts in proton exchange membrane fuel cells (PEMFCs) remains a key challenge for long-haul truck applications. In this study, we employed a commercialized high-surface-area carbon support and performed thermal annealing under oxidizing/reducing conditions to precisely control the oxygen functional groups on its surface. Subsequently, platinum nanoparticles (Pt NPs) were uniformly dispersed on the carbon support <em>via</em> a polyol method. We systematically investigated the Pt NPs/carbon interface effect using advanced spectroscopic techniques combined with electrochemical surface analyses, while isolating the effects of Pt location and pore structure. Consequently, we significantly improved the durability of the platinum catalyst, with mass activity retention increasing from 40.9% to 78.6% of initial performance (0.393–0.403 A mg<small><sub>Pt</sub></small><small><sup>−1</sup></small>), and the electrochemical surface area (ECSA) rising from 57.9% to 84.2% of initial ECSA values (95–97 m<small><sup>2</sup></small> g<small><sub>Pt</sub></small><small><sup>−1</sup></small>). These improvements were achieved while maintaining highly precise initial parameters. Through extensive material characterization, we demonstrated that the improved durability of the platinum catalyst is attributed to the increased binding energy between the oxygen functional groups and Pt nanoparticles (NPs), as well as the suppression of Pt ionization. This study highlights the crucial role of carbon supports in fuel cells and provides guidelines for optimal design, paving the way for platinum catalysts intended for long-range fuel cell applications in areas such as ecofriendly hydrogen vehicles and distributed power generation.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 20","pages":" 14796-14808"},"PeriodicalIF":9.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01939g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing the durability of platinum catalysts in proton exchange membrane fuel cells (PEMFCs) remains a key challenge for long-haul truck applications. In this study, we employed a commercialized high-surface-area carbon support and performed thermal annealing under oxidizing/reducing conditions to precisely control the oxygen functional groups on its surface. Subsequently, platinum nanoparticles (Pt NPs) were uniformly dispersed on the carbon support via a polyol method. We systematically investigated the Pt NPs/carbon interface effect using advanced spectroscopic techniques combined with electrochemical surface analyses, while isolating the effects of Pt location and pore structure. Consequently, we significantly improved the durability of the platinum catalyst, with mass activity retention increasing from 40.9% to 78.6% of initial performance (0.393–0.403 A mgPt−1), and the electrochemical surface area (ECSA) rising from 57.9% to 84.2% of initial ECSA values (95–97 m2 gPt−1). These improvements were achieved while maintaining highly precise initial parameters. Through extensive material characterization, we demonstrated that the improved durability of the platinum catalyst is attributed to the increased binding energy between the oxygen functional groups and Pt nanoparticles (NPs), as well as the suppression of Pt ionization. This study highlights the crucial role of carbon supports in fuel cells and provides guidelines for optimal design, paving the way for platinum catalysts intended for long-range fuel cell applications in areas such as ecofriendly hydrogen vehicles and distributed power generation.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.