Adaptive microgel films with enhancing cohesion, adhesion, and wettability for robust and reversible bonding in cultural relic restoration

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-04-10 DOI:10.1016/j.jcis.2025.137558
Jiajia Wan , Menglin Tian , Xiao Wang , Mingwang Pan , Zhicheng Pan
{"title":"Adaptive microgel films with enhancing cohesion, adhesion, and wettability for robust and reversible bonding in cultural relic restoration","authors":"Jiajia Wan ,&nbsp;Menglin Tian ,&nbsp;Xiao Wang ,&nbsp;Mingwang Pan ,&nbsp;Zhicheng Pan","doi":"10.1016/j.jcis.2025.137558","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogel adhesives hold significant promise for applications in flexible intelligent systems and biomedical engineering. However, reconciling high toughness with strong, durable, and repeatable interfacial adhesion remains a daunting challenge. Herein, a new strategy was proposed involving the utilization of physically crosslinked microgels to fabricate a high-toughness adhesive microgel film, optimizing cohesion, adhesion, and wettability to significantly enhance interfacial adhesion performance. The microgels were synthesized using polyzwitterions and acrylic acid through inverse emulsion method, leveraging on their intrinsic ability to readily form abundant non-covalent interactions. The resultant microgel-based adhesive film, formed through physical crosslinking and chain entanglement mechanisms, exhibited a tensile strength of 0.34 MPa, an exceptional elongation at break of 1107.79 %, and a toughness of 2842.17 kJ/m<sup>3</sup>. Furthermore, this adhesive film demonstrated a remarkable adhesive strength of 1740.9 kPa, with its adhesion performance retaining stable and effective even under extreme environmental conditions, including elevated temperatures and complete submersion in aqueous environments. In contrast to conventional hydrogel adhesives, this microgel system achieves superior mechanical robustness, interfacial adhesion, and environmental resistance, highlighting their promising potential candidate for applications in cultural heritage conservation.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"693 ","pages":"Article 137558"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002197972500949X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogel adhesives hold significant promise for applications in flexible intelligent systems and biomedical engineering. However, reconciling high toughness with strong, durable, and repeatable interfacial adhesion remains a daunting challenge. Herein, a new strategy was proposed involving the utilization of physically crosslinked microgels to fabricate a high-toughness adhesive microgel film, optimizing cohesion, adhesion, and wettability to significantly enhance interfacial adhesion performance. The microgels were synthesized using polyzwitterions and acrylic acid through inverse emulsion method, leveraging on their intrinsic ability to readily form abundant non-covalent interactions. The resultant microgel-based adhesive film, formed through physical crosslinking and chain entanglement mechanisms, exhibited a tensile strength of 0.34 MPa, an exceptional elongation at break of 1107.79 %, and a toughness of 2842.17 kJ/m3. Furthermore, this adhesive film demonstrated a remarkable adhesive strength of 1740.9 kPa, with its adhesion performance retaining stable and effective even under extreme environmental conditions, including elevated temperatures and complete submersion in aqueous environments. In contrast to conventional hydrogel adhesives, this microgel system achieves superior mechanical robustness, interfacial adhesion, and environmental resistance, highlighting their promising potential candidate for applications in cultural heritage conservation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有增强内聚性、附着力和润湿性的自适应微凝胶膜,用于文物修复中坚固和可逆的粘接
水凝胶粘合剂在灵活的智能系统和生物医学工程中具有重要的应用前景。然而,将高韧性与强、持久和可重复的界面粘附相协调仍然是一个艰巨的挑战。本文提出了一种利用物理交联微凝胶制备高韧性粘接微凝胶膜的新策略,优化了微凝胶膜的内聚性、粘附性和润湿性,显著提高了微凝胶膜的界面粘附性能。利用聚两性离子和丙烯酸之间容易形成丰富的非共价相互作用的固有能力,通过反乳液法合成了微凝胶。通过物理交联和链缠结机制形成的微凝胶基胶膜的抗拉强度为0.34 MPa,断裂伸长率为1107.79%,韧性为2842.17 kJ/m3。此外,该胶膜的粘接强度为1740.9 kPa,即使在极端环境条件下,包括高温和水环境中完全浸没,其粘接性能也保持稳定有效。与传统的水凝胶粘合剂相比,这种微凝胶体系具有优越的机械坚固性、界面附着力和环境抗性,突出了其在文化遗产保护方面的潜在应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1