Precise modulation of nickel-molybdenum alloy (MoNi4)/molybdenum dioxide nanowires via a ternary nickel-cobalt-iron complex for enhanced electrochemical overall water splitting

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-04-10 DOI:10.1016/j.jcis.2025.137560
Peng Zuo , Fanfan Liu , Fuyan Zhao , Xiaofei Zhang , Yun Li , Kuangyong Xu , Xiaowei Fang , Zhiwei Zhang , Yun Shen , Jinyun Liu , Yefeng Liu
{"title":"Precise modulation of nickel-molybdenum alloy (MoNi4)/molybdenum dioxide nanowires via a ternary nickel-cobalt-iron complex for enhanced electrochemical overall water splitting","authors":"Peng Zuo ,&nbsp;Fanfan Liu ,&nbsp;Fuyan Zhao ,&nbsp;Xiaofei Zhang ,&nbsp;Yun Li ,&nbsp;Kuangyong Xu ,&nbsp;Xiaowei Fang ,&nbsp;Zhiwei Zhang ,&nbsp;Yun Shen ,&nbsp;Jinyun Liu ,&nbsp;Yefeng Liu","doi":"10.1016/j.jcis.2025.137560","DOIUrl":null,"url":null,"abstract":"<div><div>Developing renewable and clean energy technologies necessitates the design of efficient bifunctional catalysts that can facilitate electrochemical water splitting without relying on inert metals. This study presents a novel three-step strategy for fabricating nickel cobalt iron (NiCoFe)-modified nickel-molybdenum alloy/molybdenum dioxide (MoNi<sub>4</sub>/MoO<sub>2</sub>) nanowires on nickel foam (NF) substrates, denoted as NiCoFe-MoNi<sub>4</sub>/MoO<sub>2</sub>/NF. The synthesized catalyst demonstrates exceptional performance, achieving an impressively low overpotential (13 mV) at 10 mA·cm<sup>−2</sup> current density for the hydrogen evolution reaction (HER) and 230 mV at 50 mA·cm<sup>−2</sup> for the oxygen evolution reaction (OER). Its performance surpasses many noble-metal catalysts, achieving overall water splitting at just 1.51 V under 50 mA·cm<sup>−2</sup>. The distinctive one-dimensional (1D) nanostructure and synergistic interplay between the NiCoFe complex and the MoNi<sub>4</sub>/MoO<sub>2</sub> framework enhance mass transfer, expose additional active sites, and enhance intrinsic activity, contributing to outstanding efficiency. Incorporating cobalt (Co) and iron (Fe) into the ternary complex greatly improved the efficiencies of both HER and OER, providing a promising approach for developing high-performance, cost-effective bifunctional electrocatalysts and promoting advancements in sustainable energy conversion technologies.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"693 ","pages":"Article 137560"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725009518","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing renewable and clean energy technologies necessitates the design of efficient bifunctional catalysts that can facilitate electrochemical water splitting without relying on inert metals. This study presents a novel three-step strategy for fabricating nickel cobalt iron (NiCoFe)-modified nickel-molybdenum alloy/molybdenum dioxide (MoNi4/MoO2) nanowires on nickel foam (NF) substrates, denoted as NiCoFe-MoNi4/MoO2/NF. The synthesized catalyst demonstrates exceptional performance, achieving an impressively low overpotential (13 mV) at 10 mA·cm−2 current density for the hydrogen evolution reaction (HER) and 230 mV at 50 mA·cm−2 for the oxygen evolution reaction (OER). Its performance surpasses many noble-metal catalysts, achieving overall water splitting at just 1.51 V under 50 mA·cm−2. The distinctive one-dimensional (1D) nanostructure and synergistic interplay between the NiCoFe complex and the MoNi4/MoO2 framework enhance mass transfer, expose additional active sites, and enhance intrinsic activity, contributing to outstanding efficiency. Incorporating cobalt (Co) and iron (Fe) into the ternary complex greatly improved the efficiencies of both HER and OER, providing a promising approach for developing high-performance, cost-effective bifunctional electrocatalysts and promoting advancements in sustainable energy conversion technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用三元镍钴铁配合物对镍钼合金/二氧化钼纳米线进行精确调制,以增强电化学整体水分解
发展可再生能源和清洁能源技术需要设计高效的双功能催化剂,以促进电化学水分解,而不依赖惰性金属。本研究提出了一种新的三步策略,用于在泡沫镍(NF)衬底上制备镍钴铁(NiCoFe)改性镍钼合金/二氧化钼(MoNi4/MoO2)纳米线,标记为NiCoFe- mon4 /MoO2/NF。合成的催化剂表现出优异的性能,在10 mA·cm−2电流密度下,析氢反应(HER)的过电位极低(13 mV),在50 mA·cm−2电流密度下,析氧反应(OER)的过电位为230 mV。它的性能超过了许多贵金属催化剂,在50 mA·cm−2和1.51 V的电压下实现了整体的水分解。独特的一维(1D)纳米结构和NiCoFe配合物与MoNi4/MoO2框架之间的协同相互作用增强了传质,暴露了额外的活性位点,增强了内在活性,从而提高了效率。将钴(Co)和铁(Fe)加入三元配合物中,大大提高了HER和OER的效率,为开发高性能、低成本的双功能电催化剂和促进可持续能源转换技术的进步提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1