Enhanced catalytic ozonation via FeBi bimetallic catalyst: Unveiling the role of zero-valent Bi as an oxygen vacancy-mediated electron reservoir

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Pub Date : 2025-04-14 DOI:10.1016/j.envres.2025.121617
Yingtao Lu , Yiping Zhang , Wanting He , Yongchao Zhou , Qiyu Lian
{"title":"Enhanced catalytic ozonation via FeBi bimetallic catalyst: Unveiling the role of zero-valent Bi as an oxygen vacancy-mediated electron reservoir","authors":"Yingtao Lu ,&nbsp;Yiping Zhang ,&nbsp;Wanting He ,&nbsp;Yongchao Zhou ,&nbsp;Qiyu Lian","doi":"10.1016/j.envres.2025.121617","DOIUrl":null,"url":null,"abstract":"<div><div>A series of bimetallic carbon catalysts (FeM@C, M = Bi, Ce, Co, Ni, Mn) were synthesized via pyrolysis of metal-organic framework (MOF) precursors, among which FeBi@C exhibits exceptional catalytic ozonation performance, achieving 90.73 % oxalic acid removal within 30 min and retaining 84 % of its initial activity over eight consecutive cycles. Advanced characterizations, including EPR, and <em>in-situ</em> Raman spectroscopy, revealed that oxygen vacancies (O<sub>V</sub>) serve as active sites for ozone adsorption, leading to the formation of reactive oxygen species (ROS) and ≡ Fe-O-O<sup>-</sup> peroxo intermediates. The post-reaction XPS analysis indicated significant shifts in binding energies and changes in the proportions of oxygen species, revealing the unique Fe-Bi synergy. The Fe2p spectra showed a decrease in Fe<sup>2+</sup> content and a negative shift in binding energy, indicating an active Fe<sup>2+</sup>/Fe<sup>3+</sup> redox cycle. The Bi4f spectra confirmed the presence of zero-valent Bi, which acts as an “electron reservoir”, continuously donating electrons to enhance Fe<sup>2+</sup>/Fe<sup>3+</sup> redox cycle and promote ozone activation. This unique mechanism, where zero-valent Bi sustains the electron transfer cycle, significantly enhances both the catalytic efficiency and long-term stability of the FeBi@C system, distinguishing it from conventional bimetallic catalysts. This work provides a novel strategy for designing high-performance catalysts for environmental remediation.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"277 ","pages":"Article 121617"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125008680","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A series of bimetallic carbon catalysts (FeM@C, M = Bi, Ce, Co, Ni, Mn) were synthesized via pyrolysis of metal-organic framework (MOF) precursors, among which FeBi@C exhibits exceptional catalytic ozonation performance, achieving 90.73 % oxalic acid removal within 30 min and retaining 84 % of its initial activity over eight consecutive cycles. Advanced characterizations, including EPR, and in-situ Raman spectroscopy, revealed that oxygen vacancies (OV) serve as active sites for ozone adsorption, leading to the formation of reactive oxygen species (ROS) and ≡ Fe-O-O- peroxo intermediates. The post-reaction XPS analysis indicated significant shifts in binding energies and changes in the proportions of oxygen species, revealing the unique Fe-Bi synergy. The Fe2p spectra showed a decrease in Fe2+ content and a negative shift in binding energy, indicating an active Fe2+/Fe3+ redox cycle. The Bi4f spectra confirmed the presence of zero-valent Bi, which acts as an “electron reservoir”, continuously donating electrons to enhance Fe2+/Fe3+ redox cycle and promote ozone activation. This unique mechanism, where zero-valent Bi sustains the electron transfer cycle, significantly enhances both the catalytic efficiency and long-term stability of the FeBi@C system, distinguishing it from conventional bimetallic catalysts. This work provides a novel strategy for designing high-performance catalysts for environmental remediation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过FeBi双金属催化剂增强催化臭氧化:揭示零价Bi作为氧空位介导的电子储层的作用
通过金属-有机骨架(MOF)前驱体热解合成了一系列双金属碳催化剂(FeM@C, M = Bi, Ce, Co, Ni, Mn),其中FeBi@C具有优异的臭氧氧化催化性能,在30 min内脱除草酸90.73%,连续8个循环后仍保持84%的初始活性。先进的表征,包括EPR和原位拉曼光谱,揭示了氧空位(OV)作为臭氧吸附的活性位点,导致活性氧(ROS)和≡Fe-O-O-过氧中间体的形成。反应后的XPS分析表明,结合能和氧的比例发生了显著的变化,揭示了Fe-Bi独特的协同作用。Fe2p光谱显示Fe2+含量降低,结合能负移动,表明Fe2+/Fe3+氧化还原循环活跃。Bi4f光谱证实了零价Bi的存在,它作为一个“电子储层”,不断地提供电子,促进Fe2+/Fe3+氧化还原循环,促进臭氧活化。这种独特的机制,其中零价铋维持电子转移循环,显着提高了FeBi@C系统的催化效率和长期稳定性,将其与传统的双金属催化剂区分开来。这项工作为设计高性能的环境修复催化剂提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
期刊最新文献
Highly conductive and adsorptive nitrogen-doped biochar-based electrochemical sensor for sensitive bisphenol A detection. Efficient Removal of EDTA-Cu by a Novel Green Fe-Ca-Al Composite Metal Material Coupled with NaClO. Commercial Food Environment and Cognitive Health: findings from 114 urban communities. A scoping review on the impact of ambient temperature on human infertility. Ion Regulation and Property Enhancement of Calcium Carbonate-Based Cementitious Materials: The Role of Mg Doping and Polyacrylic Acid Stabilization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1