Biosynthesis of delta-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase.
J K Hoober, A Kahn, D E Ash, S Gough, C G Kannangara
{"title":"Biosynthesis of delta-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase.","authors":"J K Hoober, A Kahn, D E Ash, S Gough, C G Kannangara","doi":"10.1007/BF02908411","DOIUrl":null,"url":null,"abstract":"<p><p>Glutamic acid 1-semialdehyde hydrochloride was synthesized and purified. Its prior structural characterization was extended and confirmed by 1H NMR spectroscopy and chemical analyses. In aqueous solution at pH 1 to 2 glutamic acid 1-semialdehyde exists in a stable hydrated form, but at pH 8.0 it has a half-life of 3 to 4 min. Spontaneous degradation of the material at pH 8.0 generated some undefined condensation products, but coincidentally a significant amount isomerized to 5-aminolevulinate. At pH 6.8 to 7.0, glutamate 1-semialdehyde is sufficiently stable to permit routine and reproducible assay for glutamate 1-semialdehyde aminotransferase activity. Only about 20% of the enzyme extracted from chloroplasts was sensitive to inactivation by gabaculine with no pretreatment. However, when the enzyme was exposed to 5-aminolevulinate, levulinate or 4,5-dioxovalerate in the absence of glutamate 1-semialdehyde, it was completely inactivated by gabaculine; 4,6-dioxoheptanoate had no effect on the enzyme. These results lead to the hypothesis that the aminotransferase exists in the chloroplast in a complex with pyridoxamine phosphate, which must be converted to the pyridoxal form before it can form a stable adduct with gabaculine. We propose that the enzyme catalyzes the conversion of glutamate 1-semialdehyde to 5-aminolevulinate via 4,5-diaminovalerate.</p>","PeriodicalId":9616,"journal":{"name":"Carlsberg Research Communications","volume":"53 1","pages":"11-25"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02908411","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carlsberg Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02908411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91
Abstract
Glutamic acid 1-semialdehyde hydrochloride was synthesized and purified. Its prior structural characterization was extended and confirmed by 1H NMR spectroscopy and chemical analyses. In aqueous solution at pH 1 to 2 glutamic acid 1-semialdehyde exists in a stable hydrated form, but at pH 8.0 it has a half-life of 3 to 4 min. Spontaneous degradation of the material at pH 8.0 generated some undefined condensation products, but coincidentally a significant amount isomerized to 5-aminolevulinate. At pH 6.8 to 7.0, glutamate 1-semialdehyde is sufficiently stable to permit routine and reproducible assay for glutamate 1-semialdehyde aminotransferase activity. Only about 20% of the enzyme extracted from chloroplasts was sensitive to inactivation by gabaculine with no pretreatment. However, when the enzyme was exposed to 5-aminolevulinate, levulinate or 4,5-dioxovalerate in the absence of glutamate 1-semialdehyde, it was completely inactivated by gabaculine; 4,6-dioxoheptanoate had no effect on the enzyme. These results lead to the hypothesis that the aminotransferase exists in the chloroplast in a complex with pyridoxamine phosphate, which must be converted to the pyridoxal form before it can form a stable adduct with gabaculine. We propose that the enzyme catalyzes the conversion of glutamate 1-semialdehyde to 5-aminolevulinate via 4,5-diaminovalerate.