Emmanuele Parisi, Emanuela Santagata, Przemysław Kula, Jakub Herman, Sakuntala Gupta, Elena Simone, Salvatore Zarrella, Timothy M. Korter, Roberto Centore
{"title":"Mechanical Transitions in Crystals: The Low-Temperature Thermosalient Transition of a Mesogenic Polyphenyl","authors":"Emmanuele Parisi, Emanuela Santagata, Przemysław Kula, Jakub Herman, Sakuntala Gupta, Elena Simone, Salvatore Zarrella, Timothy M. Korter, Roberto Centore","doi":"10.1021/jacs.5c03448","DOIUrl":null,"url":null,"abstract":"Thermosalient transitions are a subset of single-crystal-to-single-crystal (SCSC) transitions, in which the change of lattice parameters is highly anisotropic and very fast. As a result, crystals at the transition undergo macroscopic dynamical effects (hopping, jumping, and shattering). These transitions feature a conversion of heat to mechanical energy that can be exploited in the realization of advanced materials. Most thermosalient transitions are observed at temperatures higher than room temperature. Examples of low-temperature thermosalient transitions are rare. We describe a new example of a low-temperature thermosalient transition in a sexiphenyl compound. At about −40 °C, the parent single crystal (phase I) shatters into single crystal fragments of the new phase (phase II). The two phases have been studied by single-crystal X-ray analysis using a synchrotron source, variable-temperature Raman spectroscopy, and computational analysis of lattice normal vibration modes. A mechanism of the transition is proposed. We confirm colossal thermal expansion coefficients and supercells as reliable features of thermosalient transitions and add as a third feature a low-frequency principal optical vibration of the crystal lattice prompting the transition. Based on this, a roadmap for the automated prediction of thermosalient transitions in molecular crystals is also outlined.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"60 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c03448","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermosalient transitions are a subset of single-crystal-to-single-crystal (SCSC) transitions, in which the change of lattice parameters is highly anisotropic and very fast. As a result, crystals at the transition undergo macroscopic dynamical effects (hopping, jumping, and shattering). These transitions feature a conversion of heat to mechanical energy that can be exploited in the realization of advanced materials. Most thermosalient transitions are observed at temperatures higher than room temperature. Examples of low-temperature thermosalient transitions are rare. We describe a new example of a low-temperature thermosalient transition in a sexiphenyl compound. At about −40 °C, the parent single crystal (phase I) shatters into single crystal fragments of the new phase (phase II). The two phases have been studied by single-crystal X-ray analysis using a synchrotron source, variable-temperature Raman spectroscopy, and computational analysis of lattice normal vibration modes. A mechanism of the transition is proposed. We confirm colossal thermal expansion coefficients and supercells as reliable features of thermosalient transitions and add as a third feature a low-frequency principal optical vibration of the crystal lattice prompting the transition. Based on this, a roadmap for the automated prediction of thermosalient transitions in molecular crystals is also outlined.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.