Xiaodong Cheng, Xiaojuan Cheng, Riyang Huang, Linying Zeng, Dongliang Song, Xin Zhang, Yan Wang, Teng-Xiang Huang, Kuangcai Chen, Ning Fang, Xiaokun Li
{"title":"Digitally Assisted Single-Particle Tracking for Accurate Analysis of Complicated Cargo Transport Dynamics in Microtubule Networks","authors":"Xiaodong Cheng, Xiaojuan Cheng, Riyang Huang, Linying Zeng, Dongliang Song, Xin Zhang, Yan Wang, Teng-Xiang Huang, Kuangcai Chen, Ning Fang, Xiaokun Li","doi":"10.1021/acs.analchem.4c07046","DOIUrl":null,"url":null,"abstract":"Intracellular transport is a fundamental process crucial for cellular function, driven by the coordinated action of motor proteins that move cargo along microtubule tracks. Traditional tracking methods primarily focus on cargo trajectories, often overlooking rotational dynamics and their impact on cargo interactions with the complex microtubule network. To address this limitation, we introduced a digitally assisted single-particle tracking (dSPT) method that significantly advances the angular resolution of intracellular cargo dynamics. By integrating intensity measurements with advanced digital classification algorithms to process defocused half-plane image patterns captured through bifocal parallax microscopy, this approach extends the angular resolution range from the conventional method to a full 0–360° range, even in heterogeneous cellular environments, while maintaining high spatial and temporal resolutions. In intracellular transport events, we directly observed the accurate determination of the chiral rotational directions and precise calculation of the step angles. When combined with super-resolution radial fluctuation (SRRF) imaging to achieve higher-resolution microtubule imaging, our dSPT technique enables in vivo investigations of cargo dynamics during intracellular transport. To validate this, we studied the rotational dynamics of the cargo in microtubule confinement. Furthermore, we identified characteristic patch-searching patterns in the microtubule network, where cargo exhibited a combined motion pattern of confined and hopping diffusion to navigate through the constraints imposed by the microtubules.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"29 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c07046","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Intracellular transport is a fundamental process crucial for cellular function, driven by the coordinated action of motor proteins that move cargo along microtubule tracks. Traditional tracking methods primarily focus on cargo trajectories, often overlooking rotational dynamics and their impact on cargo interactions with the complex microtubule network. To address this limitation, we introduced a digitally assisted single-particle tracking (dSPT) method that significantly advances the angular resolution of intracellular cargo dynamics. By integrating intensity measurements with advanced digital classification algorithms to process defocused half-plane image patterns captured through bifocal parallax microscopy, this approach extends the angular resolution range from the conventional method to a full 0–360° range, even in heterogeneous cellular environments, while maintaining high spatial and temporal resolutions. In intracellular transport events, we directly observed the accurate determination of the chiral rotational directions and precise calculation of the step angles. When combined with super-resolution radial fluctuation (SRRF) imaging to achieve higher-resolution microtubule imaging, our dSPT technique enables in vivo investigations of cargo dynamics during intracellular transport. To validate this, we studied the rotational dynamics of the cargo in microtubule confinement. Furthermore, we identified characteristic patch-searching patterns in the microtubule network, where cargo exhibited a combined motion pattern of confined and hopping diffusion to navigate through the constraints imposed by the microtubules.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.