Manipulating Nonadiabatic Dynamics by Plasmonic Nanocavity

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2025-04-17 DOI:10.1021/acs.jpclett.5c00736
Yu Wang, Ruihao Bi, Wenjie Dou
{"title":"Manipulating Nonadiabatic Dynamics by Plasmonic Nanocavity","authors":"Yu Wang, Ruihao Bi, Wenjie Dou","doi":"10.1021/acs.jpclett.5c00736","DOIUrl":null,"url":null,"abstract":"In recent years, plasmonic nanocavities have emerged as powerful tools for controlling and enhancing light–matter interactions on the nanoscale. This study explores the role of plasmonic nanocavities in manipulating nonadiabatic dynamics, particularly in systems where fast electronic transitions are crucial. By coupling molecular states to the plasmonic resonances of metallic nanocavities, we demonstrate that the local electromagnetic fields generated by plasmons can significantly influence the rates and pathways of nonadiabatic transitions, including electron transfer and excitation relaxation processes. Using the Floquet quantum master equation (FQME) and Floquet surface hopping (FSH) methods that we previously developed, we find that plasmonic nanocavities can enhance nonadiabatic effects by tuning the plasmonic coupling strength, the molecule–metal interaction strength, and the material properties. These approaches offer a new perspective for predicting molecular dynamics in ultrafast processes. Our findings pave the way for designing novel plasmonic devices capable of controlling electron and energy transfer in chemical reactions, optoelectronic applications, and quantum information processing.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"27 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00736","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, plasmonic nanocavities have emerged as powerful tools for controlling and enhancing light–matter interactions on the nanoscale. This study explores the role of plasmonic nanocavities in manipulating nonadiabatic dynamics, particularly in systems where fast electronic transitions are crucial. By coupling molecular states to the plasmonic resonances of metallic nanocavities, we demonstrate that the local electromagnetic fields generated by plasmons can significantly influence the rates and pathways of nonadiabatic transitions, including electron transfer and excitation relaxation processes. Using the Floquet quantum master equation (FQME) and Floquet surface hopping (FSH) methods that we previously developed, we find that plasmonic nanocavities can enhance nonadiabatic effects by tuning the plasmonic coupling strength, the molecule–metal interaction strength, and the material properties. These approaches offer a new perspective for predicting molecular dynamics in ultrafast processes. Our findings pave the way for designing novel plasmonic devices capable of controlling electron and energy transfer in chemical reactions, optoelectronic applications, and quantum information processing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用等离子体纳米腔操纵非绝热动力学
近年来,等离子体纳米腔已成为在纳米尺度上控制和增强光-物质相互作用的有力工具。本研究探讨了等离子体纳米腔在操纵非绝热动力学中的作用,特别是在快速电子跃迁至关重要的系统中。通过将分子态与金属纳米腔的等离子体共振耦合,我们证明了等离子体产生的局部电磁场可以显著影响非绝热跃迁的速率和途径,包括电子转移和激发弛豫过程。利用先前开发的Floquet量子主方程(FQME)和Floquet表面跳变(FSH)方法,我们发现等离子体纳米腔可以通过调节等离子体耦合强度、分子-金属相互作用强度和材料性质来增强非绝热效应。这些方法为超快过程分子动力学预测提供了新的视角。我们的发现为设计能够控制化学反应、光电应用和量子信息处理中的电子和能量转移的新型等离子体器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Ultrafast Symmetry-Breaking Charge Separation in Covalent Boron-Dipyrromethene Dimers Modulated by Coulombic and Charge Transfer Coupling. CO2 Hydrogenation on Pd(111): The Role of Subsurface Hydrogen and Surface Defects. Single-Particle Emission Microscopy of Green-Emitting Carbon Dots Made from Top-Down and Bottom-Up Precursors. Bond-Valence-Driven Model for Highest Infrared-Active Optical Phonon Frequency in Complex Oxides. Transition from the Nanoscale to Bulk in the Nonequilibrium Optical Response of Laser-Dressed Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1