Room-Temperature NO2 Sensor Based on Oxygen Vacancy-Rich SnO Nanosheets

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2025-04-08 DOI:10.1021/acsanm.5c01114
Wen Ji Zhang, Shao Yang Wang, Tao Tang, Yin Fen Cheng, Yi Liang, Jing Hao Zhuang, Xin Yi Hu, Min Zhang, Yao Yang Liu, Qi Jie Ma, Bao Yue Zhang, Azmira Jannat, Jian Zhen Ou* and Zhong Li*, 
{"title":"Room-Temperature NO2 Sensor Based on Oxygen Vacancy-Rich SnO Nanosheets","authors":"Wen Ji Zhang,&nbsp;Shao Yang Wang,&nbsp;Tao Tang,&nbsp;Yin Fen Cheng,&nbsp;Yi Liang,&nbsp;Jing Hao Zhuang,&nbsp;Xin Yi Hu,&nbsp;Min Zhang,&nbsp;Yao Yang Liu,&nbsp;Qi Jie Ma,&nbsp;Bao Yue Zhang,&nbsp;Azmira Jannat,&nbsp;Jian Zhen Ou* and Zhong Li*,&nbsp;","doi":"10.1021/acsanm.5c01114","DOIUrl":null,"url":null,"abstract":"<p >Nitrogen dioxide (NO<sub>2</sub>) is a hazardous air pollutant that poses significant threats to both human health and the environment. The development of NO<sub>2</sub> sensors with high sensitivity, exceptional selectivity, and ultralow detection limits is of critical scientific and practical importance. However, conventional metal oxide-based NO<sub>2</sub> sensors often suffer from inherent limitations, including high operating temperatures and relatively low sensitivity. Given that oxygen vacancies in metal oxides serve as active sites for NO<sub>2</sub> adsorption and facilitate charge transfer at the gas–solid interface, this study demonstrates the room-temperature sensing capabilities of two-dimensional (2D) SnO nanosheets with a high concentration of oxygen vacancies, achieved without external excitation (e.g., light). Notably, the sensor exhibits n-type behavior, attributed to free electrons originating from oxygen vacancies. More importantly, the proposed sensor outperforms pure SnO and other metal oxide-based sensors, achieving a remarkably low detection limit of 10 ppb and a record-high response value of 136.43 toward 800 ppb of NO<sub>2</sub>. Furthermore, it demonstrates outstanding repeatability, exceptional selectivity, and long-term stability over two months. These findings highlight the feasibility of achieving ppb-level NO<sub>2</sub> detection at room temperature through morphological control and defect engineering, paving the way for the development of ultrasensitive and high-performance NO<sub>2</sub> sensors.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 15","pages":"7806–7816 7806–7816"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c01114","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen dioxide (NO2) is a hazardous air pollutant that poses significant threats to both human health and the environment. The development of NO2 sensors with high sensitivity, exceptional selectivity, and ultralow detection limits is of critical scientific and practical importance. However, conventional metal oxide-based NO2 sensors often suffer from inherent limitations, including high operating temperatures and relatively low sensitivity. Given that oxygen vacancies in metal oxides serve as active sites for NO2 adsorption and facilitate charge transfer at the gas–solid interface, this study demonstrates the room-temperature sensing capabilities of two-dimensional (2D) SnO nanosheets with a high concentration of oxygen vacancies, achieved without external excitation (e.g., light). Notably, the sensor exhibits n-type behavior, attributed to free electrons originating from oxygen vacancies. More importantly, the proposed sensor outperforms pure SnO and other metal oxide-based sensors, achieving a remarkably low detection limit of 10 ppb and a record-high response value of 136.43 toward 800 ppb of NO2. Furthermore, it demonstrates outstanding repeatability, exceptional selectivity, and long-term stability over two months. These findings highlight the feasibility of achieving ppb-level NO2 detection at room temperature through morphological control and defect engineering, paving the way for the development of ultrasensitive and high-performance NO2 sensors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于富氧空位SnO纳米片的室温NO2传感器
二氧化氮(NO2)是一种有害的空气污染物,对人类健康和环境构成重大威胁。开发高灵敏度、高选择性和超低检测限的二氧化氮传感器具有重要的科学意义和实际意义。然而,传统的基于金属氧化物的二氧化氮传感器通常存在固有的局限性,包括高工作温度和相对较低的灵敏度。考虑到金属氧化物中的氧空位作为NO2吸附的活性位点并促进气固界面的电荷转移,本研究证明了具有高浓度氧空位的二维(2D) SnO纳米片在没有外部激发(例如光)的情况下具有室温传感能力。值得注意的是,传感器表现出n型行为,归因于来自氧空位的自由电子。更重要的是,该传感器优于纯SnO和其他基于金属氧化物的传感器,实现了10 ppb的极低检测限和创纪录的136.43对800 ppb NO2的响应值。此外,它还具有出色的重复性、卓越的选择性和超过两个月的长期稳定性。这些发现强调了通过形态控制和缺陷工程在室温下实现ppb级NO2检测的可行性,为开发超灵敏、高性能的NO2传感器铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Publication Information Issue Editorial Masthead Resistive Switching and Synapse Properties of Bilayered CuO|MAPbI3 Nanometer-Thick Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1