n-Type Metal-Oxide-Semiconductor Field-Effect Transistor Based on 100-Period Fully Strained SiGe/Si Nanostructures with Superlattice Epitaxy for Three-Dimensional Dynamic Random-Access Memory

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2025-04-07 DOI:10.1021/acsanm.5c00426
Ying Zhang, Xiangsheng Wang, Shujuan Mao, Jing Liang, Mingli Liu, Xinhe Wang, Han Wang, Wenhao Zhang, Hailing Wang, Yanpeng Song, Xiaomeng Liu, Xinyou Liu, Zhenzhen Kong, Zhaoqiang Bai, Guilei Wang* and Chao Zhao*, 
{"title":"n-Type Metal-Oxide-Semiconductor Field-Effect Transistor Based on 100-Period Fully Strained SiGe/Si Nanostructures with Superlattice Epitaxy for Three-Dimensional Dynamic Random-Access Memory","authors":"Ying Zhang,&nbsp;Xiangsheng Wang,&nbsp;Shujuan Mao,&nbsp;Jing Liang,&nbsp;Mingli Liu,&nbsp;Xinhe Wang,&nbsp;Han Wang,&nbsp;Wenhao Zhang,&nbsp;Hailing Wang,&nbsp;Yanpeng Song,&nbsp;Xiaomeng Liu,&nbsp;Xinyou Liu,&nbsp;Zhenzhen Kong,&nbsp;Zhaoqiang Bai,&nbsp;Guilei Wang* and Chao Zhao*,&nbsp;","doi":"10.1021/acsanm.5c00426","DOIUrl":null,"url":null,"abstract":"<p >Vertically stacked 3D dynamic random-access memory (DRAM) with horizontal cells has emerged as a promising solution for next-generation high-density memory. In order to meet the next node requirement, the stacked period of a specific SiGe/Si superlattice (SL) needs to exceed more than 64. However, achieving ultrahigh-period SiGe/Si SLs with uniform strain and low defects remains a critical challenge. Here, we demonstrate the epitaxial growth of fully strained 100-period Si/Si<sub>0.8</sub>Ge<sub>0.2</sub> (43/8 nm) SLs with a total thickness of 5 μm. The SLs exhibit exceptional tier-to-tier uniformity (σ<sub>thickness</sub> ∼ 0.33, σ<sub>Ge%</sub> ∼ 0.66), excellent crystallinity, sharp SiGe/Si interface (&lt;3.3 nm), smooth surface (roughness &lt;0.1 nm), and low threading dislocation density (&lt;10<sup>7</sup>/cm<sup>2</sup>). To efficiently evaluate the electrical performance of stacked SLs, we propose an approach using planar n-MOSFETs fabricated on the top Si layer. Remarkably, these devices show consistent electrical properties across 5–100 periods, confirming the uniformity of electrical performance of individual Si layers across the entire stack, even for 100-period SLs. This work provides a scalable pathway toward high-performance 3D DRAM with significantly enhanced storage density.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 15","pages":"7653–7661 7653–7661"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00426","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Vertically stacked 3D dynamic random-access memory (DRAM) with horizontal cells has emerged as a promising solution for next-generation high-density memory. In order to meet the next node requirement, the stacked period of a specific SiGe/Si superlattice (SL) needs to exceed more than 64. However, achieving ultrahigh-period SiGe/Si SLs with uniform strain and low defects remains a critical challenge. Here, we demonstrate the epitaxial growth of fully strained 100-period Si/Si0.8Ge0.2 (43/8 nm) SLs with a total thickness of 5 μm. The SLs exhibit exceptional tier-to-tier uniformity (σthickness ∼ 0.33, σGe% ∼ 0.66), excellent crystallinity, sharp SiGe/Si interface (<3.3 nm), smooth surface (roughness <0.1 nm), and low threading dislocation density (<107/cm2). To efficiently evaluate the electrical performance of stacked SLs, we propose an approach using planar n-MOSFETs fabricated on the top Si layer. Remarkably, these devices show consistent electrical properties across 5–100 periods, confirming the uniformity of electrical performance of individual Si layers across the entire stack, even for 100-period SLs. This work provides a scalable pathway toward high-performance 3D DRAM with significantly enhanced storage density.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于100周期全应变SiGe/Si纳米结构和超晶格外延的n型金属氧化物半导体场效应晶体管用于三维动态随机存取存储器
具有水平单元的垂直堆叠3D动态随机存取存储器(DRAM)已成为下一代高密度存储器的一种有前途的解决方案。为了满足下一个节点的需求,特定SiGe/Si超晶格(SL)的堆叠周期需要超过64。然而,实现具有均匀应变和低缺陷的超高周期SiGe/Si SLs仍然是一个关键的挑战。在这里,我们展示了全应变100周期Si/Si0.8Ge0.2 (43/8 nm) SLs的外延生长,总厚度为5 μm。SLs表现出优异的层间均匀性(σ厚度~ 0.33,σGe% ~ 0.66),优异的结晶度,清晰的SiGe/Si界面(<3.3 nm),光滑的表面(粗糙度<;0.1 nm)和低的螺纹位错密度(<107/cm2)。为了有效地评估堆叠SLs的电学性能,我们提出了一种在顶部Si层上制造平面n- mosfet的方法。值得注意的是,这些器件在5-100周期内表现出一致的电性能,证实了整个堆叠中单个Si层电性能的均匀性,即使是100周期的SLs。这项工作为显著提高存储密度的高性能3D DRAM提供了可扩展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Publication Information Issue Editorial Masthead Resistive Switching and Synapse Properties of Bilayered CuO|MAPbI3 Nanometer-Thick Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1