Controlled Synthesis of (Ni, Co) Bimetallic Selenide Composites Supported on Carbon Cloth and Their Application in Supercapacitors

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2025-04-03 DOI:10.1021/acsanm.5c00021
Dalai Jin*, Wenting Yang, Jiamin Zhou, Yufeng Jiao, Linlin Ren, Qingqing Feng, Wenjun Peng* and Zhaojun Min*, 
{"title":"Controlled Synthesis of (Ni, Co) Bimetallic Selenide Composites Supported on Carbon Cloth and Their Application in Supercapacitors","authors":"Dalai Jin*,&nbsp;Wenting Yang,&nbsp;Jiamin Zhou,&nbsp;Yufeng Jiao,&nbsp;Linlin Ren,&nbsp;Qingqing Feng,&nbsp;Wenjun Peng* and Zhaojun Min*,&nbsp;","doi":"10.1021/acsanm.5c00021","DOIUrl":null,"url":null,"abstract":"<p >Transition metal selenides have attracted much attention as electrode materials for supercapacitors, and reasonable morphology control strategies can effectively improve their actual energy storage capacity and performance. Here, we synthesized (Ni,Co)Se<sub>2</sub> nanosheet arrays with a nanopetal and nanoagaric morphology on a flexible carbon cloth by simply adjusting the solvothermal reaction conditions. It was found that compared with the nanoagaric (Ni,Co)Se<sub>2</sub> nanosheet array, the nanopetal (Ni,Co)Se<sub>2</sub> nanosheet array has a more highly ordered structure and larger specific surface area, which can provide a large number of reaction sites and promote the transfer of electrons and ions, which effectively enhances the performance of the supercapacitor. The power density of asymmetric supercapacitors with the nanopetal (Ni,Co)Se<sub>2</sub>@CC as the positive electrode is 250.0 W kg<sup>–1</sup>, while the maximum energy density can reach 75.3 Wh kg<sup>–1</sup>, demonstrating superior performance compared to other similar materials. This work provides a new method for the design of electrode material morphology for high performance.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 15","pages":"7540–7551 7540–7551"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00021","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal selenides have attracted much attention as electrode materials for supercapacitors, and reasonable morphology control strategies can effectively improve their actual energy storage capacity and performance. Here, we synthesized (Ni,Co)Se2 nanosheet arrays with a nanopetal and nanoagaric morphology on a flexible carbon cloth by simply adjusting the solvothermal reaction conditions. It was found that compared with the nanoagaric (Ni,Co)Se2 nanosheet array, the nanopetal (Ni,Co)Se2 nanosheet array has a more highly ordered structure and larger specific surface area, which can provide a large number of reaction sites and promote the transfer of electrons and ions, which effectively enhances the performance of the supercapacitor. The power density of asymmetric supercapacitors with the nanopetal (Ni,Co)Se2@CC as the positive electrode is 250.0 W kg–1, while the maximum energy density can reach 75.3 Wh kg–1, demonstrating superior performance compared to other similar materials. This work provides a new method for the design of electrode material morphology for high performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳布负载(Ni, Co)双金属硒化复合材料的可控合成及其在超级电容器中的应用
过渡金属硒化物作为超级电容器的电极材料备受关注,合理的形态控制策略可以有效提高其实际储能能力和性能。在此,我们通过简单调整溶解热反应条件,在柔性碳布上合成了具有纳米金属和纳米琼脂两种形貌的(Ni,Co)Se2 纳米片阵列。研究发现,与纳米刺状(Ni,Co)Se2 纳米片阵列相比,纳米金属(Ni,Co)Se2 纳米片阵列具有更高的有序结构和更大的比表面积,可以提供大量的反应位点,促进电子和离子的转移,从而有效提高超级电容器的性能。以纳米金属片(Ni,Co)Se2@CC 为正极的不对称超级电容器的功率密度为 250.0 W kg-1,最大能量密度可达 75.3 Wh kg-1,性能优于其他同类材料。这项工作为设计高性能的电极材料形态提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Publication Information Issue Publication Information Issue Editorial Masthead Resistive Switching and Synapse Properties of Bilayered CuO|MAPbI3 Nanometer-Thick Films Hard Mask Strategies in Nanoscale Patterning of Mg-Based Oxide Semiconductors: Implications for Advanced Device Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1