Iron–Copper Single-Atom Nanozyme for Enhanced Synergistic Antibacterial Activity

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2025-04-08 DOI:10.1021/acsanm.5c01738
Changguan Huang, Fei Xu, Zixia Huang, Liling Hao, Xiuxiu Wu, Tai Ye, Min Yuan, Jinsong Yu, Fengqin Yin and Hui Cao*, 
{"title":"Iron–Copper Single-Atom Nanozyme for Enhanced Synergistic Antibacterial Activity","authors":"Changguan Huang,&nbsp;Fei Xu,&nbsp;Zixia Huang,&nbsp;Liling Hao,&nbsp;Xiuxiu Wu,&nbsp;Tai Ye,&nbsp;Min Yuan,&nbsp;Jinsong Yu,&nbsp;Fengqin Yin and Hui Cao*,&nbsp;","doi":"10.1021/acsanm.5c01738","DOIUrl":null,"url":null,"abstract":"<p >The escalating phenomenon of bacterial resistance has precipitated the exacerbation of maladies attributable to microbial infections, constituting a substantial menace to human health. Nanozymes can catalyze the production of large quantities of reactive oxygen species (ROS) and then destroy bacterial cells. Nevertheless, most nanozymes require H<sub>2</sub>O<sub>2</sub>, photothermal, and acidic environments to elicit an effective antibacterial response. In this study, a Fe–Cu bimetallic single-atom nanozyme (FeCu-SAN-SO<sub>4</sub>²<sup>-</sup>) was synthesized by high-temperature pyrolysis and sulfation using an environmentally friendly Cu-FeMOF as a precursor. The resulting FeCu-SAN-SO<sub>4</sub>²<sup>-</sup> exhibited excellent oxidase (OXD)-like activity due to the synergistic effect of Fe–Cu dual sites, the high specific surface area (202 m<sup>2</sup> g<sup>–1</sup>), and mesopore distribution (11.08 nm). FeCu-SAN-SO<sub>4</sub>²<sup>-</sup> also overcame the pH limitation by introducing Brønsted acidic sites and demonstrated excellent temperature tolerance and storage stability compared with natural enzymes. At a concentration of 0.1 mg mL<sup>–1</sup>, the killing rate against four strains of <i>E. coli</i>, <i>S. aureus</i>, <i>A. hydrophila</i>, and <i>A. tarda</i> reached a level exceeding 90% without needing external conditions. The high antibacterial efficacy of FeCu-SAN-SO<sub>4</sub>²<sup>-</sup> was mainly attributed to its efficient generation of ROS, predominantly O<sub>2</sub><sup>–</sup>• and •OH radicals. These ROS further deprive electrons of bacterial cellular components, causing irreversible oxidative stress. This work provides an effective antimicrobial agent by enhancing the environmental tolerance of nanozymes, which has great potential for food preservation and clinical applications.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 15","pages":"7887–7898 7887–7898"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c01738","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating phenomenon of bacterial resistance has precipitated the exacerbation of maladies attributable to microbial infections, constituting a substantial menace to human health. Nanozymes can catalyze the production of large quantities of reactive oxygen species (ROS) and then destroy bacterial cells. Nevertheless, most nanozymes require H2O2, photothermal, and acidic environments to elicit an effective antibacterial response. In this study, a Fe–Cu bimetallic single-atom nanozyme (FeCu-SAN-SO4²-) was synthesized by high-temperature pyrolysis and sulfation using an environmentally friendly Cu-FeMOF as a precursor. The resulting FeCu-SAN-SO4²- exhibited excellent oxidase (OXD)-like activity due to the synergistic effect of Fe–Cu dual sites, the high specific surface area (202 m2 g–1), and mesopore distribution (11.08 nm). FeCu-SAN-SO4²- also overcame the pH limitation by introducing Brønsted acidic sites and demonstrated excellent temperature tolerance and storage stability compared with natural enzymes. At a concentration of 0.1 mg mL–1, the killing rate against four strains of E. coli, S. aureus, A. hydrophila, and A. tarda reached a level exceeding 90% without needing external conditions. The high antibacterial efficacy of FeCu-SAN-SO4²- was mainly attributed to its efficient generation of ROS, predominantly O2• and •OH radicals. These ROS further deprive electrons of bacterial cellular components, causing irreversible oxidative stress. This work provides an effective antimicrobial agent by enhancing the environmental tolerance of nanozymes, which has great potential for food preservation and clinical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强协同抗菌活性的铁铜单原子纳米酶
细菌耐药现象日益加剧,导致微生物感染引起的疾病加剧,对人类健康构成重大威胁。纳米酶可以催化大量活性氧(ROS)的产生,然后破坏细菌细胞。然而,大多数纳米酶需要H2O2、光热和酸性环境才能引起有效的抗菌反应。本研究以环境友好型Cu-FeMOF为前驱体,通过高温热解和磺化法制备了Fe-Cu双金属单原子纳米酶(FeCu-SAN-SO4²-)。由于Fe-Cu双位点的协同作用,FeCu-SAN-SO4²-具有较高的比表面积(202 m2 g-1)和介孔分布(11.08 nm),具有优异的氧化酶(OXD)活性。FeCu-SAN-SO4²-还通过引入Brønsted酸性位点克服了pH限制,与天然酶相比,表现出优异的耐温性和储存稳定性。在0.1 mg mL-1的浓度下,对大肠杆菌、金黄色葡萄球菌、嗜水假单胞菌和滞后假单胞菌的杀灭率均达到90%以上。FeCu-SAN-SO4²-具有较高的抗菌效果,主要是由于其能有效生成活性氧,主要是O2 -•和•OH自由基。这些ROS进一步剥夺了细菌细胞成分的电子,导致不可逆的氧化应激。本研究通过提高纳米酶的环境耐受性,提供了一种有效的抗菌剂,在食品保鲜和临床应用方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Publication Information Issue Editorial Masthead Resistive Switching and Synapse Properties of Bilayered CuO|MAPbI3 Nanometer-Thick Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1