Anisotropic structural response and decomposition behaviors of Hexanitrostilbene under high pressure: Insights from ab initio calculations.

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL Computational and Theoretical Chemistry Pub Date : 2025-04-12 DOI:10.1016/j.comptc.2025.115235
Hai-Chao Ren, Fan Jiang, Xiao-Yang Wu, Bo Wang, Yi-Ping Wang, Jun Tao
{"title":"Anisotropic structural response and decomposition behaviors of Hexanitrostilbene under high pressure: Insights from ab initio calculations.","authors":"Hai-Chao Ren,&nbsp;Fan Jiang,&nbsp;Xiao-Yang Wu,&nbsp;Bo Wang,&nbsp;Yi-Ping Wang,&nbsp;Jun Tao","doi":"10.1016/j.comptc.2025.115235","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically investigates the structural and decomposition behaviors of hexanitrostilbene (HNS) under high pressures (1 atm–10 GPa) via first-principles calculations and experimental validation. Structural analysis reveals anisotropic compression, with the <em>b</em>-axis exhibiting the highest compressibility (reduced to 83.9 % at 10 GPa), while the <em>c</em>-axis anomalously expands at 3 GPa due to differential hydrogen bond network responses. Electronic structure analysis identifies C–NO₂ bond cleavage as the initial decomposition step, with liberated oxygen atoms competing for C<img>H bonds to form NO and OH radicals. High pressure stabilizes C–-NO₂ bonds by strengthening intermolecular hydrogen interactions, delaying decomposition. Infrared spectroscopy confirms the preservation of <em>trans</em>-HNS configuration under compression. These findings elucidate the interplay between mechanical stress and chemical stability in HNS, providing atomistic insights into its shock insensitivity and guiding the design of advanced energetic materials.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1248 ","pages":"Article 115235"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25001719","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigates the structural and decomposition behaviors of hexanitrostilbene (HNS) under high pressures (1 atm–10 GPa) via first-principles calculations and experimental validation. Structural analysis reveals anisotropic compression, with the b-axis exhibiting the highest compressibility (reduced to 83.9 % at 10 GPa), while the c-axis anomalously expands at 3 GPa due to differential hydrogen bond network responses. Electronic structure analysis identifies C–NO₂ bond cleavage as the initial decomposition step, with liberated oxygen atoms competing for CH bonds to form NO and OH radicals. High pressure stabilizes C–-NO₂ bonds by strengthening intermolecular hydrogen interactions, delaying decomposition. Infrared spectroscopy confirms the preservation of trans-HNS configuration under compression. These findings elucidate the interplay between mechanical stress and chemical stability in HNS, providing atomistic insights into its shock insensitivity and guiding the design of advanced energetic materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高压下己二烯各向异性的结构响应和分解行为:ab initio 计算的启示。
通过第一性原理计算和实验验证,系统地研究了高压(1 atm-10 GPa)条件下己硝基二苯乙烯(HNS)的结构和分解行为。结构分析显示出各向异性压缩,其中b轴表现出最高的压缩性(在10 GPa时降低到83.9%),而c轴由于不同的氢键网络响应而在3 GPa时异常膨胀。电子结构分析表明,C-NO 2键裂解是初始分解步骤,释放的氧原子争夺CH键形成NO和OH自由基。高压通过加强分子间氢的相互作用来稳定C -NO₂键,延缓分解。红外光谱证实了反式hns结构在压缩下的保存。这些发现阐明了HNS中机械应力和化学稳定性之间的相互作用,为其冲击不敏感性提供了原子的见解,并指导了先进含能材料的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
期刊最新文献
Rational molecular design of star-shaped small molecule donors based on BODIPY for high-performance organic solar cells applications Tuning surface stability and hydrogen diffusion on nano magnesium surface via nonmetallic heteroatom functionalization: A first-principles study Investigation of hydrogen storage capacity in 2D silicene polymorphs through physisorption and metal decoration – a first-principles study First principles study on mechanical and electronic properties of high pressure phases of 2D black phosphorus and their titanium-doped systems Engineering ORR electrocatalytic performance of single metal site by halogen ligand modification: A first principles perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1