Buffer Effects on Nitrite Reduction Electrocatalysis

IF 13.1 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2025-04-18 DOI:10.1021/acscatal.4c07765
Yair Shahaf, Thierry K. Slot, Shaked Avidan, Jeffrey E. Dick, David Eisenberg
{"title":"Buffer Effects on Nitrite Reduction Electrocatalysis","authors":"Yair Shahaf, Thierry K. Slot, Shaked Avidan, Jeffrey E. Dick, David Eisenberg","doi":"10.1021/acscatal.4c07765","DOIUrl":null,"url":null,"abstract":"The Haber-Bosch process has provided an energy-intensive way to produce ammonia for over 100 years. However, alternative methods are required to lower pollution and enhance energy efficiency. Unfortunately, key mechanistic insights into the heterogeneous reduction of nitrogen and its intermediates are lacking. The nitrite reduction reaction (NO<sub>2</sub>RR) is an important electrochemical reaction in the nitrogen cycle, playing a significant role in ammonia-based energy storage and wastewater remediation. Although the NO<sub>2</sub>RR involves the transfer of multiple protons competing with the hydrogen evolution reaction (HER), the effect of the proton donor has not been investigated in heterogeneous electrocatalysis. We now present an electrochemical study of nitrite reduction in four buffer systems acting as proton donors: citrate, phosphate, 2-(<i>N</i>-morpholino)ethanesulfonic acid, and borate buffers. The chosen catalyst was a typical iron- and nitrogen-codoped carbon (FeNC) with atomically dispersed FeN<sub>4</sub> sites. All buffers except borate enhanced the NO<sub>2</sub>RR considerably, while the reduction mechanism was independent of buffer identity. The kinetics of the reaction depended more strongly on buffer concentration than on the <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;NO&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.219em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.991em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.196em, 1001.99em, 2.616em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.991em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1001.42em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Main;\">NO</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.412em, 1000.57em, 4.207em, -999.997em); top: -4.372em; left: 1.423em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">−</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.355em, 1000.46em, 4.151em, -999.997em); top: -3.69em; left: 1.423em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.316em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>NO</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>−</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msubsup><mrow><mi>NO</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>−</mo></mrow></msubsup></math></script> concentration. Furthermore, we propose a double role for the protonated buffer species: a crucial proton donor during the rate-determining reduction of an NO<sub><i>x</i></sub> intermediate and an efficient pH regulator near the electrode. These key mechanistic insights into heterogeneous nitrite reduction help to understand proton-coupled electrocatalysis and contribute to the development of alternative nitrogen-based fuels.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"108 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c07765","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Haber-Bosch process has provided an energy-intensive way to produce ammonia for over 100 years. However, alternative methods are required to lower pollution and enhance energy efficiency. Unfortunately, key mechanistic insights into the heterogeneous reduction of nitrogen and its intermediates are lacking. The nitrite reduction reaction (NO2RR) is an important electrochemical reaction in the nitrogen cycle, playing a significant role in ammonia-based energy storage and wastewater remediation. Although the NO2RR involves the transfer of multiple protons competing with the hydrogen evolution reaction (HER), the effect of the proton donor has not been investigated in heterogeneous electrocatalysis. We now present an electrochemical study of nitrite reduction in four buffer systems acting as proton donors: citrate, phosphate, 2-(N-morpholino)ethanesulfonic acid, and borate buffers. The chosen catalyst was a typical iron- and nitrogen-codoped carbon (FeNC) with atomically dispersed FeN4 sites. All buffers except borate enhanced the NO2RR considerably, while the reduction mechanism was independent of buffer identity. The kinetics of the reaction depended more strongly on buffer concentration than on the NO2 concentration. Furthermore, we propose a double role for the protonated buffer species: a crucial proton donor during the rate-determining reduction of an NOx intermediate and an efficient pH regulator near the electrode. These key mechanistic insights into heterogeneous nitrite reduction help to understand proton-coupled electrocatalysis and contribute to the development of alternative nitrogen-based fuels.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚硝酸盐还原电催化的缓冲效应
100多年来,哈伯-博世工艺一直是一种能源密集型的氨生产方法。然而,需要其他方法来降低污染和提高能源效率。不幸的是,对氮及其中间体的非均相还原的关键机制见解是缺乏的。亚硝酸盐还原反应(NO2RR)是氮循环中重要的电化学反应,在氨基储能和废水修复中发挥着重要作用。虽然NO2RR涉及多个质子的转移与析氢反应(HER)竞争,但质子供体在非均相电催化中的作用尚未研究。我们现在提出了一项亚硝酸盐还原在四种缓冲系统中作为质子供体的电化学研究:柠檬酸盐、磷酸盐、2-(N-morpholino)乙磺酸和硼酸盐缓冲液。所选择的催化剂是典型的铁氮共掺杂碳(FeNC),具有原子分散的FeN4位点。除硼酸盐外,其他缓冲剂均能显著提高NO2RR,其还原机制与缓冲剂身份无关。缓冲液浓度对反应动力学的影响比对NO - 2NO2 - NO2 -浓度的影响更大。此外,我们提出了质子化缓冲物质的双重作用:在NOx中间体的速率决定还原过程中,一个关键的质子供体和一个有效的电极附近的pH调节剂。这些对非均相亚硝酸盐还原的关键机理见解有助于理解质子偶联电催化,并有助于开发替代氮基燃料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Regio- and Enantioselective Pictet–Spengler Reaction of α-Diketones Catalyzed by a Single H-Bond Donor Organocatalyst Gold–Mediated Enhancement of Methanol Oxidation Activity and Selectivity on Pt–Au@Ni Electrocatalysts Eliminating Coordinatively Unsaturated Al3+ Sites Increases the Activity of Al2O3-Supported Monomeric VOx in Nonoxidative Propane Dehydrogenation Bifunctional Iron Catalyst for Endoselective Cycloisomerization of Nucleophile-Functionalized Terminal Alkynes Elucidating Rate-Determining Steps of Surface-Catalyzed Reactions Exhibiting Isothermal Rate Multiplicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1