SoFi: Spoofing OS Fingerprints Against Network Reconnaissance

IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2025-04-18 DOI:10.1109/TIFS.2025.3561673
Xu Han;Haocong Li;Wei Wang;Haining Wang;Xiaobo Ma;Shouling Ji;Qiang Li
{"title":"SoFi: Spoofing OS Fingerprints Against Network Reconnaissance","authors":"Xu Han;Haocong Li;Wei Wang;Haining Wang;Xiaobo Ma;Shouling Ji;Qiang Li","doi":"10.1109/TIFS.2025.3561673","DOIUrl":null,"url":null,"abstract":"Fingerprinting is a network reconnaissance technique utilized for gathering information about online computing systems, including operation systems and applications. Unfortunately, attackers typically leverage fingerprinting techniques to locate, enumerate, and subsequently target vulnerable systems, which is the first primary stage of a cyber attack. In this work, we explore the susceptibility of machine learning (ML)-based classifiers to misclassification, where a slight perturbation in the packet is included to spoof OS fingerprints. We propose <sc>SoFi</small> (Spoof OS Fingerprints), an adversarial example generation algorithm under TCP/IP specification constraints, to create effective perturbations in a packet for deceiving an OS fingerprint. Specifically, <sc>SoFi</small> has three major technical innovations: (1) it is the first to utilize adversarial examples to automatically perturb fingerprinting techniques; (2) it complies with constraints and integrity of network packets; (3) it achieves a high success rate in spoofing OS fingerprints. We validate the effectiveness of adversarial packets against active and passive OS fingerprints, verifying the transferability and robustness of <sc>SoFi</small>. Comprehensive experimental results demonstrate that <sc>SoFi</small> automatically identifies applicable and available OS fingerprint features, unlike existing tools relying on expert knowledge.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"4484-4497"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10969800/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Fingerprinting is a network reconnaissance technique utilized for gathering information about online computing systems, including operation systems and applications. Unfortunately, attackers typically leverage fingerprinting techniques to locate, enumerate, and subsequently target vulnerable systems, which is the first primary stage of a cyber attack. In this work, we explore the susceptibility of machine learning (ML)-based classifiers to misclassification, where a slight perturbation in the packet is included to spoof OS fingerprints. We propose SoFi (Spoof OS Fingerprints), an adversarial example generation algorithm under TCP/IP specification constraints, to create effective perturbations in a packet for deceiving an OS fingerprint. Specifically, SoFi has three major technical innovations: (1) it is the first to utilize adversarial examples to automatically perturb fingerprinting techniques; (2) it complies with constraints and integrity of network packets; (3) it achieves a high success rate in spoofing OS fingerprints. We validate the effectiveness of adversarial packets against active and passive OS fingerprints, verifying the transferability and robustness of SoFi. Comprehensive experimental results demonstrate that SoFi automatically identifies applicable and available OS fingerprint features, unlike existing tools relying on expert knowledge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SOFI:欺骗操作系统指纹对抗网络侦察
指纹识别是一种网络侦察技术,用于收集在线计算系统的信息,包括操作系统和应用程序。不幸的是,攻击者通常利用指纹技术来定位、枚举并随后瞄准易受攻击的系统,这是网络攻击的第一个主要阶段。在这项工作中,我们探索了基于机器学习(ML)的分类器对错误分类的敏感性,其中数据包中的轻微扰动被包括在欺骗操作系统指纹中。我们提出了SoFi(欺骗操作系统指纹),这是一种基于TCP/IP规范约束的对抗性示例生成算法,用于在数据包中创建有效的扰动来欺骗操作系统指纹。具体来说,SoFi有三个主要的技术创新:(1)它是第一个利用对抗性示例来自动干扰指纹识别技术的;(2)符合网络数据包的约束和完整性;(3)欺骗操作系统指纹的成功率高。我们验证了对抗数据包对主动和被动操作系统指纹的有效性,验证了SoFi的可转移性和鲁棒性。综合实验结果表明,与现有的依赖专家知识的工具不同,SoFi可以自动识别适用和可用的OS指纹特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
ScamSweeper: Detecting Illegal Accounts in Web3 Scams via Transactions Analysis Optimal Access Structure Partition Methods for Image Secret Sharing XAI for Fraud Detection: An Attention-Based Ensemble of CNNs, GNNs, and Confidence-Driven Gating for Reliable Decision-Making When Multimedia Meets Security: Privacy-Preserving Cross-modal Retrieval for Large-scale Data GaitDG: A Single-Source Domain Generalization Framework for Cross-Domain Gait Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1