Detection and Characterization of Polarimetric Radar Bright Band Signatures in Northern Taiwan

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2025-04-18 DOI:10.1109/TGRS.2025.3562378
Jui Le Loh;Wei-Yu Chang;Yu-Chieng Liou;Pin-Fang Lin;Pao-Liang Chang
{"title":"Detection and Characterization of Polarimetric Radar Bright Band Signatures in Northern Taiwan","authors":"Jui Le Loh;Wei-Yu Chang;Yu-Chieng Liou;Pin-Fang Lin;Pao-Liang Chang","doi":"10.1109/TGRS.2025.3562378","DOIUrl":null,"url":null,"abstract":"A dual-polarization measurement (DPM) profile simulation was developed and applied to four years of S-band polarimetric radar observations in northern Taiwan to obtain and investigate bright band (BB) features. The algorithm exploits the BB signatures from high elevation angle radar data (<inline-formula> <tex-math>$\\ge 6^{\\circ }$ </tex-math></inline-formula>) in cross-correlation coefficient (<inline-formula> <tex-math>$\\rho _{\\text {hv}}$ </tex-math></inline-formula>), differential reflectivity (<inline-formula> <tex-math>$Z_{\\text {dr}}$ </tex-math></inline-formula>), and reflectivity (Z) to obtain BB features such as intensity (I), thickness (T), and peak height (H). A key advantage of the proposed algorithm is its ability to detect BB signatures both spatially across azimuthal directions and vertically across elevation angles over time, facilitating a composited optimal H map. Validation against radiosonde data indicates good agreement in estimated H values, with an averaged mean difference (MD) of ~0.2 km. The algorithm effectively detects BB signatures in northern Taiwan, using DPMs as reliable indicators for ML identification, demonstrated in a cold front case study by capturing the transition H from 4 to 2 km. Climatological trends in T and I showed elevation angle dependence, while H remains largely independent of elevation angle. Seasonal trends indicate that H is highest in November and lowest in February and March, which corresponds with radiosonde data, while T and I exhibit minimal seasonal variation.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-20"},"PeriodicalIF":8.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10970003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10970003/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A dual-polarization measurement (DPM) profile simulation was developed and applied to four years of S-band polarimetric radar observations in northern Taiwan to obtain and investigate bright band (BB) features. The algorithm exploits the BB signatures from high elevation angle radar data ( $\ge 6^{\circ }$ ) in cross-correlation coefficient ( $\rho _{\text {hv}}$ ), differential reflectivity ( $Z_{\text {dr}}$ ), and reflectivity (Z) to obtain BB features such as intensity (I), thickness (T), and peak height (H). A key advantage of the proposed algorithm is its ability to detect BB signatures both spatially across azimuthal directions and vertically across elevation angles over time, facilitating a composited optimal H map. Validation against radiosonde data indicates good agreement in estimated H values, with an averaged mean difference (MD) of ~0.2 km. The algorithm effectively detects BB signatures in northern Taiwan, using DPMs as reliable indicators for ML identification, demonstrated in a cold front case study by capturing the transition H from 4 to 2 km. Climatological trends in T and I showed elevation angle dependence, while H remains largely independent of elevation angle. Seasonal trends indicate that H is highest in November and lowest in February and March, which corresponds with radiosonde data, while T and I exhibit minimal seasonal variation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
台湾北部偏振雷达亮带信号的探测与特征描述
摘要建立了双偏振测量(DPM)廓线模拟方法,并将其应用于台湾北部4年的s波段偏振雷达观测,以获取和研究明亮波段(BB)特征。该算法利用高仰角雷达数据($\ge 6^{\circ }$)中的相关系数($\rho _{\text {hv}}$)、差分反射率($Z_{\text {dr}}$)和反射率(Z)中的BB特征,得到BB的强度(I)、厚度(T)和峰高(H)等特征。该算法的一个关键优势是它能够在空间上跨越方位角和垂直上跨越仰角随时间检测BB特征,从而促进合成最优H图。对无线电探空数据的验证表明,估计H值的一致性很好,平均平均差(MD)为0.2 km。该算法有效地检测台湾北部的BB特征,使用dpm作为ML识别的可靠指标,在冷锋案例研究中通过捕获从4公里到2公里的过渡H来证明。T和I的气候变化趋势与海拔角相关,而H在很大程度上与海拔角无关。季节变化趋势表明,H在11月最高,2月和3月最低,与探空数据一致,而T和I的季节变化最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
Corrections to “A Frequency-Domain Iterative Approach for Rapid 3-D Imaging of Large-Scale Magnetic Amplitude Data Affected by Remanence” HybridFlow: A Hybrid Velocity Generation Framework for Precipitation Nowcasting BPME: A Blind Perceptual Metric-driven Method for Enhancing Degraded Polar Optical Remote Sensing Imagery Context-Aware and Semantic-Guided Adaptive Filtering Network for Infrared Small Target Detection Physical Model and Experimental Results for Millimeter-Wave Emissivity of Seawater Foam at W-Band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1