Exploiting Transformer-Based Networks and Boosting Algorithms for Ultralow Compressible Boride Design

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-04-21 DOI:10.1021/acs.jpcc.5c00183
Edirisuriya M. Dilanga Siriwardane, Rongzhi Dong, Jianjun Hu, Deniz Çakır
{"title":"Exploiting Transformer-Based Networks and Boosting Algorithms for Ultralow Compressible Boride Design","authors":"Edirisuriya M. Dilanga Siriwardane, Rongzhi Dong, Jianjun Hu, Deniz Çakır","doi":"10.1021/acs.jpcc.5c00183","DOIUrl":null,"url":null,"abstract":"Ultralow compressible materials, which have a high bulk modulus (<i>K</i>), are invaluable in extreme conditions due to their ability to undergo significant compression without structural failure. As a large number of borides can be found with high <i>K</i>, this study develops a computational framework to scan the vast chemical space to identify the ultralow compressible borides. Transformer-based networks are helpful to generate new chemical compositions due to their self-attention mechanism, scalability, and ability to capture long-range dependencies. First, we developed a transformer-based network to generate new binary and ternary boride compositions based on the known boride compositions. Next, we trained a hybrid model based on AdaBoost and Gradient Boosting algorithms with a mean absolute error (MAE) of 14.1 GPa to scan the high <i>K</i> borides. The CALYPSO code was used to find the possible structures for those materials. After predicting <i>K</i> for a broad chemical domain, we found that Re–B and W–B systems are promising ultralow compressible materials. We then performed density functional theory (DFT) calculations to investigate the stability of the high <i>K</i> materials. Our computations suggest that W<sub>3</sub>B<sub>2</sub>, W<sub>2</sub>B<sub>3</sub>, W<sub>5</sub>VB<sub>4</sub>, and Re<sub>5</sub>CrB<sub>4</sub> materials exhibit <i>K</i> &gt; 300 GPa with a negative formation energy and energy-above-hull less than 40 meV. These materials are mechanically and dynamically stable based on the elastic constant calculations and the phonon dispersion.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"1 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c00183","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultralow compressible materials, which have a high bulk modulus (K), are invaluable in extreme conditions due to their ability to undergo significant compression without structural failure. As a large number of borides can be found with high K, this study develops a computational framework to scan the vast chemical space to identify the ultralow compressible borides. Transformer-based networks are helpful to generate new chemical compositions due to their self-attention mechanism, scalability, and ability to capture long-range dependencies. First, we developed a transformer-based network to generate new binary and ternary boride compositions based on the known boride compositions. Next, we trained a hybrid model based on AdaBoost and Gradient Boosting algorithms with a mean absolute error (MAE) of 14.1 GPa to scan the high K borides. The CALYPSO code was used to find the possible structures for those materials. After predicting K for a broad chemical domain, we found that Re–B and W–B systems are promising ultralow compressible materials. We then performed density functional theory (DFT) calculations to investigate the stability of the high K materials. Our computations suggest that W3B2, W2B3, W5VB4, and Re5CrB4 materials exhibit K > 300 GPa with a negative formation energy and energy-above-hull less than 40 meV. These materials are mechanically and dynamically stable based on the elastic constant calculations and the phonon dispersion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于变压器的网络和增强算法进行超低可压缩硼化物设计
超低可压缩材料具有很高的体积模量(K),在极端条件下非常宝贵,因为它们能够承受显著的压缩而不会造成结构破坏。由于可以发现大量具有高K的硼化物,本研究开发了一种计算框架来扫描广阔的化学空间以识别超低可压缩硼化物。基于变压器的网络有助于生成新的化学成分,因为它们具有自关注机制、可伸缩性和捕获远程依赖关系的能力。首先,我们开发了一个基于变压器的网络,根据已知的硼化物成分生成新的二元和三元硼化物成分。接下来,我们训练了一个基于AdaBoost和Gradient Boosting算法的混合模型,平均绝对误差(MAE)为14.1 GPa,用于扫描高K硼化物。CALYPSO代码用于寻找这些材料的可能结构。在预测了广泛化学领域的K后,我们发现Re-B和W-B体系是有前途的超低可压缩材料。然后,我们进行密度泛函理论(DFT)计算来研究高K材料的稳定性。我们的计算表明,W3B2、W2B3、W5VB4和Re5CrB4材料表现出K >;300 GPa,负地层能量,船体上能量小于40mev。根据弹性常数计算和声子色散,这些材料具有机械稳定性和动态稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Metadynamics Simulations of Vinyl Polymer-Assisted Carbon Nanotube Dispersion for Next-Generation Batteries Intelligent Fitting Identification of the Best Equation for the Determination of Gold Nanoparticle Size from the Optical Absorption Spectrum Electronic Structure Modulation of Borophene via N, S Modification and Iridium Infusion for Superior Oxygen Evolution Reaction Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1