Biobased oleyl glycidyl ether: copolymerization with ethylene oxide, postmodification, thermal properties, and micellization behavior†

IF 3.9 2区 化学 Q2 POLYMER SCIENCE Polymer Chemistry Pub Date : 2025-05-06 DOI:10.1039/d5py00159e
Gregor M. Linden , Sandra Schüttner , Nora Fribiczer , Sebastian Seiffert , Holger Frey
{"title":"Biobased oleyl glycidyl ether: copolymerization with ethylene oxide, postmodification, thermal properties, and micellization behavior†","authors":"Gregor M. Linden ,&nbsp;Sandra Schüttner ,&nbsp;Nora Fribiczer ,&nbsp;Sebastian Seiffert ,&nbsp;Holger Frey","doi":"10.1039/d5py00159e","DOIUrl":null,"url":null,"abstract":"<div><div>Oleyl glycidyl ether (OlGE) is a highly hydrophobic monomer synthesized from a biobased fatty alcohol and epichlorohydrin. When combined with hydrophilic monomethoxy poly(ethylene glycol) (mPEG) macroinitiators, well-defined, highly amphiphilic AB block copolymers are obtained <em>via</em> anionic ring-opening polymerization (<em>Đ</em> ≤ 1.08). Surprisingly, an investigation of the copolymerization kinetics of OlGE and ethylene oxide revealed an almost ideally random copolymerization (<em>r</em><sub>EO</sub> = 1.27, <em>r</em><sub>OlGE</sub> = 0.78) despite the significant structural differences. Both statistical and block copolymers were investigated regarding their behavior in aqueous solution. The block copolymers of the type mPEG-<em>b</em>-POlGE featured two distinct melting temperatures (<em>T</em><sub>m</sub>s). Besides a melting transition of mPEG, a second <em>T</em><sub>m</sub> is attributed to the crystallization of the <em>cis</em>-alkenyl side chains of the OlGE units. Varying degrees of side chain hydrogenation of the POlGE homopolymer using potassium azodicarboxylate (PADA) allowed for tailoring of the <em>T</em><sub>m</sub>. The thiol–ene click reaction permitted subsequent functionalization. This work does not merely highlight the prospect of novel polyether surfactants, it also suggests the potential of biobased long-chain polyethers for the development of drug delivery systems featuring temperature-controlled release.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"16 21","pages":"Pages 2494-2505"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1759995425001561","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Oleyl glycidyl ether (OlGE) is a highly hydrophobic monomer synthesized from a biobased fatty alcohol and epichlorohydrin. When combined with hydrophilic monomethoxy poly(ethylene glycol) (mPEG) macroinitiators, well-defined, highly amphiphilic AB block copolymers are obtained via anionic ring-opening polymerization (Đ ≤ 1.08). Surprisingly, an investigation of the copolymerization kinetics of OlGE and ethylene oxide revealed an almost ideally random copolymerization (rEO = 1.27, rOlGE = 0.78) despite the significant structural differences. Both statistical and block copolymers were investigated regarding their behavior in aqueous solution. The block copolymers of the type mPEG-b-POlGE featured two distinct melting temperatures (Tms). Besides a melting transition of mPEG, a second Tm is attributed to the crystallization of the cis-alkenyl side chains of the OlGE units. Varying degrees of side chain hydrogenation of the POlGE homopolymer using potassium azodicarboxylate (PADA) allowed for tailoring of the Tm. The thiol–ene click reaction permitted subsequent functionalization. This work does not merely highlight the prospect of novel polyether surfactants, it also suggests the potential of biobased long-chain polyethers for the development of drug delivery systems featuring temperature-controlled release.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物基油基缩水甘油醚:与环氧乙烷共聚,后改性,热性能和胶束行为
油基缩水甘油酯醚(OlGE)是一种由生物基脂肪醇和环氧氯丙烷合成的高度疏水单体。当与亲水性单甲氧基聚乙二醇(mPEG)大引发剂结合时,通过阴离子开环聚合得到定义良好的高度两亲性AB嵌段共聚物(Đ≤1.08)。令人惊讶的是,对OlGE和环氧乙烷共聚动力学的研究表明,尽管存在显著的结构差异,但共聚过程几乎是理想的随机共聚(rEO = 1.27, rOlGE = 0.78)。研究了统计共聚物和嵌段共聚物在水溶液中的行为。mPEG-b-POlGE嵌段共聚物具有两种不同的熔融温度(Tms)。除了mPEG的熔融转变外,第二个Tm归因于OlGE单元的顺式烯基侧链的结晶。使用偶氮二羧酸钾(PADA)对POlGE均聚物进行不同程度的侧链加氢,可以对Tm进行剪裁。巯基点击反应允许随后的功能化。这项工作不仅突出了新型聚醚表面活性剂的前景,也表明了生物基长链聚醚在开发具有温控释放功能的药物输送系统方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
期刊最新文献
Silicone vitrimers prepared by vulcanisation of pendant vinylpolysiloxanes with elemental sulfur Synthesis of biomass-based comb-shaped polyesters and their thermal properties Living Polymerization of an Amphiphilic Helical Aramid Diblock Copolymer Metallacycle- and metallacage-based supramolecular polymers: Synthesis, characterization, and applications Upper Critical Solution Temperature (UCST) Behavior of Pyroglutamate-Functionalized Non-Ionic Homopolymers: Cosolvency in Water/Alcohol Binary Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1