Engineering Artificial Protrusions of Zn Anodes for Aqueous Zinc Batteries

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-04-21 DOI:10.1021/acs.nanolett.4c06347
Jifei Sun, Xinhua Zheng, Zhengxin Zhu, Mingming Wang, Yan Xu, Ke Li, Yuan Yuan, Mingyan Chuai, Zaichun Liu, Taoli Jiang, Hanlin Hu, Wei Chen
{"title":"Engineering Artificial Protrusions of Zn Anodes for Aqueous Zinc Batteries","authors":"Jifei Sun, Xinhua Zheng, Zhengxin Zhu, Mingming Wang, Yan Xu, Ke Li, Yuan Yuan, Mingyan Chuai, Zaichun Liu, Taoli Jiang, Hanlin Hu, Wei Chen","doi":"10.1021/acs.nanolett.4c06347","DOIUrl":null,"url":null,"abstract":"Uncontrollable dendrite growth can jeopardize the cycle life of aqueous Zn batteries. Here, we propose a general strategy of engineering artificial protrusions (APs) on the electrode surface to regulate the distribution of the electrode interface electric field and induce stable Zn plating/stripping for Zn batteries. The junction-free AP-Cu network is constructed on Cu foil by an ultrafast Joule-heating-welding method. COMSOL simulation reveals that a stronger microelectric field is formed around the individual AP, which can effectively regulate a uniform nucleation of Zn on the AP-Cu network. Guided by the structural advantages of the AP design, the AP-Cu∥Zn cell delivers an average Coulombic efficiency (CE) of 99.85% at 2 C with an areal capacity of 1.77 mAh cm<sup>–2</sup> for over 3000 cycles. Moreover, the AP design enables stable cycling of both Zn|AP-Cu∥V<sub>2</sub>O<sub>5</sub> and anode-free AP-Cu∥Br<sub>2</sub> full cells, providing a promising strategy for the development of high-performance energy storage devices.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"4 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06347","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Uncontrollable dendrite growth can jeopardize the cycle life of aqueous Zn batteries. Here, we propose a general strategy of engineering artificial protrusions (APs) on the electrode surface to regulate the distribution of the electrode interface electric field and induce stable Zn plating/stripping for Zn batteries. The junction-free AP-Cu network is constructed on Cu foil by an ultrafast Joule-heating-welding method. COMSOL simulation reveals that a stronger microelectric field is formed around the individual AP, which can effectively regulate a uniform nucleation of Zn on the AP-Cu network. Guided by the structural advantages of the AP design, the AP-Cu∥Zn cell delivers an average Coulombic efficiency (CE) of 99.85% at 2 C with an areal capacity of 1.77 mAh cm–2 for over 3000 cycles. Moreover, the AP design enables stable cycling of both Zn|AP-Cu∥V2O5 and anode-free AP-Cu∥Br2 full cells, providing a promising strategy for the development of high-performance energy storage devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于锌水电池的锌阳极人工突起工程
不可控的枝晶生长会危及水锌电池的循环寿命。在此,我们提出了在电极表面设置工程人工突起的一般策略,以调节电极界面电场的分布,诱导锌电池稳定镀/剥离锌。采用超快焦耳加热焊接法在铜箔上构建了无结AP-Cu网络。COMSOL模拟表明,在单个AP周围形成了较强的微电场,可以有效地调节Zn在AP- cu网络上的均匀形核。基于AP设计的结构优势,AP- cu∥锌电池在2℃下的平均库仑效率(CE)为99.85%,面积容量为1.77 mAh cm-2,循环次数超过3000次。此外,该AP设计可以实现Zn|AP- cu∥V2O5和无阳极AP- cu∥Br2全电池的稳定循环,为高性能储能设备的开发提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Complementary Doping Strategy for Achieving Low Contact-Resistance in p-Type Two-Dimensional Field-Effect Transistors Electrical Detection of Magnetic Spin Textures Using Pure Spin Currents in Graphene Ferroelectric Control of Interlayer Excitons in 3R-MoS2/MoSe2 Heterostructures Biological Complexity-Inspired Engineering of Tough and Anisotropic Protein-Based Materials for Adaptive Sensing Two-Photon-Excited Photoinduced Force Microscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1