Ordered Graphane Nanoribbons Synthesized via High-Pressure Diels–Alder Polymerization of 2,2′-Bipyrazine

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-04-21 DOI:10.1021/jacs.5c03116
Fang Li, Xingyu Tang, Yunfan Fei, Jie Zhang, Jie Liu, Puyi Lang, Guangwei Che, Zilin Zhao, Yuqing Zheng, Yuan Fang, Chen Li, Dexiang Gao, Xiao Dong, Takanori Hattori, Jun Abe, Ho-kwang Mao, Haiyan Zheng, Kuo Li
{"title":"Ordered Graphane Nanoribbons Synthesized via High-Pressure Diels–Alder Polymerization of 2,2′-Bipyrazine","authors":"Fang Li, Xingyu Tang, Yunfan Fei, Jie Zhang, Jie Liu, Puyi Lang, Guangwei Che, Zilin Zhao, Yuqing Zheng, Yuan Fang, Chen Li, Dexiang Gao, Xiao Dong, Takanori Hattori, Jun Abe, Ho-kwang Mao, Haiyan Zheng, Kuo Li","doi":"10.1021/jacs.5c03116","DOIUrl":null,"url":null,"abstract":"Graphane shares the same two-dimensional honeycomb structure of graphene, but its saturated carbon skeleton gives rise to a bandgap and therefore provides more possibilities for the development of novel carbon-based semiconductors. However, the hydrogenation of graphene usually leads to disordered and incompletely hydrogenated graphane, and the precise synthesis of graphane with a specific configuration is still very challenging. Here, we synthesized a crystalline graphane nanoribbon (GANR) via pressure-induced polymerization of 2,2′-bipyrazine (BPZ). By performing Rietveld refinement of in situ neutron diffraction data, nuclear magnetic resonance spectroscopy, infrared spectra, and theoretical calculation, we found that BPZ experienced Diels–Alder polymerization between the π···π stacked aromatic rings and formed extended boat-GANR structures with exceptional long-range order. The unreacted −C═N– groups bridge the two ends of the boat and are ready for further functionalization. The GANR has a bandgap of 2.25 eV, with booming photoelectric response (<i>I</i><sub>ON</sub>/<i>I</i><sub>OFF</sub> = 18.8). Our work highlights that high-pressure topochemical polymerization is a promising method for the precise synthesis of graphane with specific structure and desired properties.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"128 8 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c03116","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphane shares the same two-dimensional honeycomb structure of graphene, but its saturated carbon skeleton gives rise to a bandgap and therefore provides more possibilities for the development of novel carbon-based semiconductors. However, the hydrogenation of graphene usually leads to disordered and incompletely hydrogenated graphane, and the precise synthesis of graphane with a specific configuration is still very challenging. Here, we synthesized a crystalline graphane nanoribbon (GANR) via pressure-induced polymerization of 2,2′-bipyrazine (BPZ). By performing Rietveld refinement of in situ neutron diffraction data, nuclear magnetic resonance spectroscopy, infrared spectra, and theoretical calculation, we found that BPZ experienced Diels–Alder polymerization between the π···π stacked aromatic rings and formed extended boat-GANR structures with exceptional long-range order. The unreacted −C═N– groups bridge the two ends of the boat and are ready for further functionalization. The GANR has a bandgap of 2.25 eV, with booming photoelectric response (ION/IOFF = 18.8). Our work highlights that high-pressure topochemical polymerization is a promising method for the precise synthesis of graphane with specific structure and desired properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2,2 ' -联吡嗪高压diols - alder聚合法制备有序石墨烯纳米带
石墨烯具有与石墨烯相同的二维蜂窝结构,但其饱和碳骨架会产生带隙,因此为新型碳基半导体的发展提供了更多的可能性。然而,石墨烯的氢化通常会导致石墨烯的无序和不完全氢化,并且精确合成具有特定构型的石墨烯仍然是非常具有挑战性的。本文采用压力聚合法制备了2,2′-联吡嗪(BPZ)晶体石墨烯纳米带。通过对原位中子衍射数据、核磁共振波谱、红外波谱和理论计算进行Rietveld细化,我们发现BPZ在π···π堆积芳香环之间发生Diels-Alder聚合,形成具有特殊长程有序的扩展船形ganr结构。未反应的−C N -基团连接在小船的两端,准备进一步功能化。gan的带隙为2.25 eV,光电响应良好(ION/IOFF = 18.8)。我们的工作强调了高压拓扑化学聚合是一种很有前途的方法,可以精确合成具有特定结构和所需性能的石墨烯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Discovery of Stacking Heterogeneity, Layer Buckling, and Residual Water in COF-999-NH2 and Implications on CO2 Capture Interpreting X-ray Diffraction Patterns of Metal–Organic Frameworks via Generative Artificial Intelligence Deep Learning Guided Exploration of Transition Metal Oxide Catalysts in Acetylene Selective Hydrogenation Conserved Transmembrane Asparagine Is Essential for the Ion-Conducting Structure and Dynamics of the SARS-CoV-2 Envelope Protein. Polyacid-Protonated Covalent Organic Frameworks Enable Stable and Efficient Photothermal Textiles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1