Defect-engineered CuxO/CeO2 catalysts: Enhanced low-temperature CO preferential oxidation through dual-promotion of CO adsorption and O2 activation

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Molecular Catalysis Pub Date : 2025-04-22 DOI:10.1016/j.mcat.2025.115148
Changjin Xu , Jiuyang Wang , Desheng Wang , Herima Qi , Laibing Wang , Riqing Cheng , Na Ta , Jiahao Shi , Wenyao Zhang , Jianping Chen , Junfang Ding , Huiqing Guo
{"title":"Defect-engineered CuxO/CeO2 catalysts: Enhanced low-temperature CO preferential oxidation through dual-promotion of CO adsorption and O2 activation","authors":"Changjin Xu ,&nbsp;Jiuyang Wang ,&nbsp;Desheng Wang ,&nbsp;Herima Qi ,&nbsp;Laibing Wang ,&nbsp;Riqing Cheng ,&nbsp;Na Ta ,&nbsp;Jiahao Shi ,&nbsp;Wenyao Zhang ,&nbsp;Jianping Chen ,&nbsp;Junfang Ding ,&nbsp;Huiqing Guo","doi":"10.1016/j.mcat.2025.115148","DOIUrl":null,"url":null,"abstract":"<div><div>The preferential oxidation of CO (CO-PROX) represents a critical strategy for trace CO elimination in hydrogen purification, where CO adsorption and O<sub>2</sub> activation are crucial for enhancing catalytic performance. Herein, we report a defect-engineered strategy mediated by MOF to promote CO adsorption and O<sub>2</sub> activation. By pyrolyzing Ce-BDC MOF, we synthesized CeO<sub>2</sub>–O support with a high–density mesoporous structure and high surface area, facilitating the well-dispersion of Cu<em>ₓ</em>O species and forming abundant interfacial Cu<sup>+</sup> active sites. The well-dispersed Cu<em><sub>x</sub></em>O species enhance their interaction with CeO<sub>2</sub>–O, resulting in weakened Ce–O bonds and promoting both lattice oxygen activation and oxygen vacancy (Vo) formation for enhanced O<sub>2</sub> activation. The optimized 15Cu<em><sub>x</sub></em>O/CeO<sub>2</sub>–O catalyst demonstrates exceptional catalytic efficiency, achieving complete CO conversion at a comparatively low temperature (T<sub>100</sub> <sub>%</sub> = 115 °C), coupled with broad temperature window applicability and outstanding stability over multiple cycles. This work establishes a MOF-guided paradigm for engineering multifunctional catalytic sites, offering a generalizable approach to design high-performance oxide catalysts for hydrogen purification and beyond.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"581 ","pages":"Article 115148"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125003335","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The preferential oxidation of CO (CO-PROX) represents a critical strategy for trace CO elimination in hydrogen purification, where CO adsorption and O2 activation are crucial for enhancing catalytic performance. Herein, we report a defect-engineered strategy mediated by MOF to promote CO adsorption and O2 activation. By pyrolyzing Ce-BDC MOF, we synthesized CeO2–O support with a high–density mesoporous structure and high surface area, facilitating the well-dispersion of CuO species and forming abundant interfacial Cu+ active sites. The well-dispersed CuxO species enhance their interaction with CeO2–O, resulting in weakened Ce–O bonds and promoting both lattice oxygen activation and oxygen vacancy (Vo) formation for enhanced O2 activation. The optimized 15CuxO/CeO2–O catalyst demonstrates exceptional catalytic efficiency, achieving complete CO conversion at a comparatively low temperature (T100 % = 115 °C), coupled with broad temperature window applicability and outstanding stability over multiple cycles. This work establishes a MOF-guided paradigm for engineering multifunctional catalytic sites, offering a generalizable approach to design high-performance oxide catalysts for hydrogen purification and beyond.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺陷工程CuxO/CeO2催化剂:通过CO吸附和O2活化双重促进来增强低温CO优先氧化
CO的优先氧化(CO- prox)代表了氢净化中微量CO消除的关键策略,其中CO吸附和O2活化对提高催化性能至关重要。在此,我们报告了一种由MOF介导的缺陷工程策略来促进CO吸附和O2活化。通过热解Ce-BDC MOF,我们合成了具有高密度介孔结构和高表面积的CeO2-O载体,促进了CuₓO的良好分散,形成了丰富的界面Cu+活性位点。分散良好的CuxO增强了它们与CeO2-O的相互作用,导致Ce-O键减弱,促进了晶格氧活化和氧空位(Vo)的形成,从而增强了O2的活化。优化后的15CuxO/ CeO2-O催化剂表现出优异的催化效率,在相对较低的温度下(t100% = 115°C)实现了完全的CO转化,同时具有广泛的温度窗适用性和在多个循环中的出色稳定性。这项工作建立了mof指导的工程多功能催化位点的范例,为设计用于氢净化及其他领域的高性能氧化物催化剂提供了一种可推广的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
期刊最新文献
Synergistic dual-path electrosynthesis of sodium 2,2,3,3-tetrafluoropropionate enabled by microporous confinement in electrocatalytic membrane reactor Mechanistic insights into photocatalytic hydrogen evolution from crude glycerol solution over gold-decorated TiO2 nanostructures Bifunctional zinc porphyrin-based organic polymers with peripheral flexible linkers as efficient catalysts for CO2 cycloaddition reactions Fabrication of 1D/2D WO3 nanorods@Ti3C2Tx Schottky junctions for photocatalytic removal of the insecticide Clothianidin from aqueous matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1