Arrest of CRISPR-Cas12a by Nonspecific Single-Stranded DNA for Biosensing

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-04-22 DOI:10.1021/acs.analchem.4c07081
Yue Liu, Yunping Wu, Yi Liu, Qiang Zhang, Hong Yuan, Shen Li, Zhi Li, Bo Wang, Yangyang Chang, Meng Liu
{"title":"Arrest of CRISPR-Cas12a by Nonspecific Single-Stranded DNA for Biosensing","authors":"Yue Liu, Yunping Wu, Yi Liu, Qiang Zhang, Hong Yuan, Shen Li, Zhi Li, Bo Wang, Yangyang Chang, Meng Liu","doi":"10.1021/acs.analchem.4c07081","DOIUrl":null,"url":null,"abstract":"CRISPR-Cas technologies have emerged as powerful biosensing tools for the sensitive and specific detection of non-nucleic acid targets. However, existing biosensing strategies suffer from poor compatibility across diverse targets due to the complicated engineering of crRNA and DNA activator required for the CRISPR-Cas activity regulation. Herein, we report a novel and straightforward strategy for designing CRISPR-Cas12a-based biosensors that function by switching structures from single-stranded (ss)DNA/CRISPR-Cas12a assembly to DNA activator/CRISPR-Cas12a complex in the presence of target bacterium. The strategy begins with a ssDNA assembly made of a trans-acting RNA-cleaving DNAzyme (tRCD) and an RNA/DNA chimeric substrate (RCS). The ssDNA assembly has the ability to bind Cas12a nonspecifically, thus indeed blocking the CRISPR-Cas12a activity. By exploiting the specific recognition and cleavage capacities of tRCD for RCS in the presence of a target, the target-bound tRCD and the cleaved RCS are released from Cas12a, thus restoring the CRISPR-Cas12a activity. This method has been successfully applied for the sensitive (detection limit: 10<sup>2</sup> CFU/mL) detection of <i>Escherichia coli</i> (<i>E. coli</i>, EC) and <i>Burkholderia gladioli</i> (<i>B. gladioli</i>, BG). For the blind testing of 30 clinical urine samples, it exhibited 100% sensitivity and 100% specificity in identifying <i>E. coli</i>-associated urinary tract infections (UTIs).","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"17 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c07081","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR-Cas technologies have emerged as powerful biosensing tools for the sensitive and specific detection of non-nucleic acid targets. However, existing biosensing strategies suffer from poor compatibility across diverse targets due to the complicated engineering of crRNA and DNA activator required for the CRISPR-Cas activity regulation. Herein, we report a novel and straightforward strategy for designing CRISPR-Cas12a-based biosensors that function by switching structures from single-stranded (ss)DNA/CRISPR-Cas12a assembly to DNA activator/CRISPR-Cas12a complex in the presence of target bacterium. The strategy begins with a ssDNA assembly made of a trans-acting RNA-cleaving DNAzyme (tRCD) and an RNA/DNA chimeric substrate (RCS). The ssDNA assembly has the ability to bind Cas12a nonspecifically, thus indeed blocking the CRISPR-Cas12a activity. By exploiting the specific recognition and cleavage capacities of tRCD for RCS in the presence of a target, the target-bound tRCD and the cleaved RCS are released from Cas12a, thus restoring the CRISPR-Cas12a activity. This method has been successfully applied for the sensitive (detection limit: 102 CFU/mL) detection of Escherichia coli (E. coli, EC) and Burkholderia gladioli (B. gladioli, BG). For the blind testing of 30 clinical urine samples, it exhibited 100% sensitivity and 100% specificity in identifying E. coli-associated urinary tract infections (UTIs).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非特异性单链DNA阻滞CRISPR-Cas12a用于生物传感
CRISPR-Cas技术已成为灵敏和特异性检测非核酸靶标的强大生物传感工具。然而,由于CRISPR-Cas活性调控所需的crRNA和DNA激活剂工程复杂,现有的生物传感策略存在跨靶点兼容性差的问题。在此,我们报告了一种新颖而直接的策略,用于设计基于crispr - cas12的生物传感器,该传感器通过在目标细菌存在下将结构从单链(ss)DNA/CRISPR-Cas12a组装转换为DNA激活剂/CRISPR-Cas12a复合物而起作用。该策略从一个由反式RNA切割DNAzyme (tRCD)和RNA/DNA嵌合底物(RCS)组成的ssDNA组装开始。ssDNA组装具有非特异性结合Cas12a的能力,因此确实阻断了CRISPR-Cas12a的活性。通过利用tRCD在存在靶标时对RCS的特异性识别和切割能力,结合靶标的tRCD和被切割的RCS从Cas12a中释放出来,从而恢复CRISPR-Cas12a的活性。该方法已成功用于大肠杆菌(E. coli, EC)和剑兰伯克氏菌(B. gladioli, BG)的灵敏检测(检出限:102 CFU/mL)。在30份临床尿液样本的盲测中,该方法在识别大肠杆菌相关尿路感染(UTIs)方面表现出100%的敏感性和100%的特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Single-Tube Instantaneous Generation of CTAB-Stabilized Gold Nanoparticles for the On-Site Molecular Identification of Foodborne and Multidrug-Resistant Pathogens Magnetic Rolling Circle Amplification-Assisted Automated Electrochemiluminescence Immunoassay for Ultrasensitive Determination of Protein Biomarkers Rational Control of Interfacial Spontaneous Redox Reactions by Modulating Single-Microdroplet Charging Noninvasive Dynamic Cell Viability Monitoring Based on Diffraction Height Fingerprint Spectra Ultrasensitive Detection of Multiple Foodborne Pathogens Using CRISPR–Cas12a on a Finger-Actuated Microfluidic Device Integrated with a Modular Pressurizing Pump
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1