Life Cycle Assessment of Liquid Transportation Fuel Produced by the Intensified Biogas to Liquid (IBGTL) Process

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-04-21 DOI:10.1021/acssuschemeng.4c08815
Rarosue J. Amaraibi, Babu Joseph, John N. Kuhn
{"title":"Life Cycle Assessment of Liquid Transportation Fuel Produced by the Intensified Biogas to Liquid (IBGTL) Process","authors":"Rarosue J. Amaraibi, Babu Joseph, John N. Kuhn","doi":"10.1021/acssuschemeng.4c08815","DOIUrl":null,"url":null,"abstract":"This paper conducts a comprehensive life cycle assessment (LCA) of the intensified biogas to liquids (IBGTL) process, focusing on its global warming potential (GWP) and comparing it to alternative biogas utilization pathways. Landfill gas (LFG), derived from municipal solid waste (MSW) decomposition, contributes significantly to methane emissions and poses environmental risks. Regulatory initiatives promote LFG capture and utilization for renewable energy production. The IBGTL process, integrating bi-reforming and Fischer–Tropsch synthesis into a compact reactor design, offers advantages in reduced capital and operating costs. This study quantifies the life cycle impacts of IBGTL diesel production and benchmarks it against other LFG utilization routes, including TriFTS diesel, LFG to electricity, and LFG to compressed renewable natural gas. Using a “well-to-wheel” boundary, the study evaluates emissions from production to usage. Findings indicate substantial reductions in greenhouse gas (GHG) emissions across all LFG-to-energy pathways compared to fossil alternatives, with the most significant savings achieved by IBGTL diesel with electricity cogeneration (Scenario 4, 221 gCO<sub>2</sub>eq/MJ reduction), followed by LFG to electricity (159 gCO<sub>2</sub>eq/MJ reduction), TriFTS diesel (107 gCO<sub>2</sub>eq/MJ reduction), and IBGTL diesel with material recycling (Scenario 2, 91.6 gCO<sub>2</sub>eq/MJ reduction). Sensitivity analyses reveal nuances in emissions impacts. The results highlight the importance of process optimization and grid characteristics in shaping the environmental performance. This research contributes insights for decision-makers, informing sustainable waste management strategies and guiding future LFG-to-energy technologies.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"23 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08815","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper conducts a comprehensive life cycle assessment (LCA) of the intensified biogas to liquids (IBGTL) process, focusing on its global warming potential (GWP) and comparing it to alternative biogas utilization pathways. Landfill gas (LFG), derived from municipal solid waste (MSW) decomposition, contributes significantly to methane emissions and poses environmental risks. Regulatory initiatives promote LFG capture and utilization for renewable energy production. The IBGTL process, integrating bi-reforming and Fischer–Tropsch synthesis into a compact reactor design, offers advantages in reduced capital and operating costs. This study quantifies the life cycle impacts of IBGTL diesel production and benchmarks it against other LFG utilization routes, including TriFTS diesel, LFG to electricity, and LFG to compressed renewable natural gas. Using a “well-to-wheel” boundary, the study evaluates emissions from production to usage. Findings indicate substantial reductions in greenhouse gas (GHG) emissions across all LFG-to-energy pathways compared to fossil alternatives, with the most significant savings achieved by IBGTL diesel with electricity cogeneration (Scenario 4, 221 gCO2eq/MJ reduction), followed by LFG to electricity (159 gCO2eq/MJ reduction), TriFTS diesel (107 gCO2eq/MJ reduction), and IBGTL diesel with material recycling (Scenario 2, 91.6 gCO2eq/MJ reduction). Sensitivity analyses reveal nuances in emissions impacts. The results highlight the importance of process optimization and grid characteristics in shaping the environmental performance. This research contributes insights for decision-makers, informing sustainable waste management strategies and guiding future LFG-to-energy technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强化沼气制液(IBGTL)工艺生产的液体运输燃料的生命周期评估
本文对强化沼气制液(IBGTL)工艺进行了综合生命周期评估(LCA),重点研究了其全球变暖潜能值(GWP),并将其与其他沼气利用途径进行了比较。垃圾填埋气(LFG)是由城市固体废物(MSW)分解产生的,是甲烷排放的重要来源,并构成环境风险。监管举措促进了LFG的捕获和利用,用于可再生能源的生产。IBGTL工艺将双向重整和费托合成集成到一个紧凑的反应器设计中,在降低资本和运行成本方面具有优势。本研究量化了IBGTL柴油生产的生命周期影响,并将其与其他LFG利用路线(包括TriFTS柴油、LFG发电和LFG压缩可再生天然气)进行了比较。该研究采用“油井到车轮”的边界,评估了从生产到使用的排放。研究结果表明,与化石燃料替代方案相比,所有LFG-to-energy途径的温室气体(GHG)排放都大幅减少,其中最显著的是采用电热电联产的IBGTL柴油(情景4,减少221 gCO2eq/MJ),其次是LFG-to- electricity(减少159 gCO2eq/MJ), TriFTS柴油(减少107 gCO2eq/MJ)和IBGTL柴油与材料回收(情景2,减少91.6 gCO2eq/MJ)。敏感性分析揭示了排放影响的细微差别。结果强调了过程优化和网格特性在塑造环境绩效方面的重要性。这项研究为决策者提供了见解,为可持续废物管理战略提供了信息,并指导了未来的lfg能源技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Cryogenic Joule-Heating Engineered Acetylene Black for Stable Conductive Domains in Long-Life Lithium-Ion Batteries Valorization of Invasive Typha australis: Synthesis and Analysis of Lignin-Containing Cellulose Nanofibers via Combined Pretreatments Oxygen-Deficient Tunnel-Structured TiNb2O7 for High-Rate, Long-Cycle Lithium Storage, and Subzero-Temperature Performance Fructose-Driven Biosynthesis of 5-Aminolevulinic Acid in the Engineered Probiotic Escherichia coli Nissle 1917 Efficient Nickel Foam-Supported Ternary Cu2ZnSnS4/Ag/PANI Photocathode for Hydrogen Evolution in Pt-free Solar Tandem PEC Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1