In Situ Atomic Tracking on the Interfacial Etching and Reconfiguration of Cu-ReSe2 Contact during Thermal Annealing

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-04-21 DOI:10.1021/acs.nanolett.5c00092
Xing Li, Weiwei Yan, Dongyang Wang, Longbin Yan, Wen-Tao Huang, Xiaoyu Guo, Yao Guo, Shaobo Cheng, Yimei Zhu, Chongxin Shan
{"title":"In Situ Atomic Tracking on the Interfacial Etching and Reconfiguration of Cu-ReSe2 Contact during Thermal Annealing","authors":"Xing Li, Weiwei Yan, Dongyang Wang, Longbin Yan, Wen-Tao Huang, Xiaoyu Guo, Yao Guo, Shaobo Cheng, Yimei Zhu, Chongxin Shan","doi":"10.1021/acs.nanolett.5c00092","DOIUrl":null,"url":null,"abstract":"The Schottky barrier height can be greatly affected by the metal diffusion, reaction, and covalent bonding formation at the contact. Exploring novel methods and revealing the fundamental mechanisms for contact engineering are of vital importance for microelectronic devices. Here, the annealing induced interfacial reactions at Cu-ReSe<sub>2</sub> contact are dynamically revealed from the atomic scale. Accompanied by the diffusion of Se to Cu, ReSe<sub>2</sub> is gradually decomposed to a thin Re interlayer through a “chain-by-chain” manner. Theoretical calculations show that the Cu atoms can facilitate the chemical bond breaking of ReSe<sub>2</sub>, significantly lowering the Se diffusion energy barrier toward Cu. The formed Re/ReSe<sub>2</sub> heterostructure presents a metal-like band structure, which underscores the critical role of Cu in altering the interfacial chemistry and promoting carrier transport across the interface. Our results can provide vital insights into the contact properties of ReSe<sub>2</sub> and provide a possible method for fabricating high-performance ReSe<sub>2</sub>-based devices.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"69 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00092","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Schottky barrier height can be greatly affected by the metal diffusion, reaction, and covalent bonding formation at the contact. Exploring novel methods and revealing the fundamental mechanisms for contact engineering are of vital importance for microelectronic devices. Here, the annealing induced interfacial reactions at Cu-ReSe2 contact are dynamically revealed from the atomic scale. Accompanied by the diffusion of Se to Cu, ReSe2 is gradually decomposed to a thin Re interlayer through a “chain-by-chain” manner. Theoretical calculations show that the Cu atoms can facilitate the chemical bond breaking of ReSe2, significantly lowering the Se diffusion energy barrier toward Cu. The formed Re/ReSe2 heterostructure presents a metal-like band structure, which underscores the critical role of Cu in altering the interfacial chemistry and promoting carrier transport across the interface. Our results can provide vital insights into the contact properties of ReSe2 and provide a possible method for fabricating high-performance ReSe2-based devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cu-ReSe2界面蚀刻与界面重构的原位原子跟踪
接触处的金属扩散、反应和共价键形成对肖特基势垒高度有很大的影响。探索接触工程的新方法,揭示接触工程的基本机理,对微电子器件具有重要意义。本文从原子尺度上动态揭示了Cu-ReSe2接触处退火诱导的界面反应。伴随着Se向Cu的扩散,ReSe2以“一链接一链”的方式逐渐分解成薄的Re中间层。理论计算表明,Cu原子可以促进ReSe2的化学键断裂,显著降低Se向Cu的扩散能垒。形成的Re/ReSe2异质结构呈现类似金属的带状结构,这强调了Cu在改变界面化学和促进载流子跨界面输运中的关键作用。我们的研究结果可以为ReSe2的接触特性提供重要的见解,并为制造高性能的基于ReSe2的器件提供一种可能的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Complementary Doping Strategy for Achieving Low Contact-Resistance in p-Type Two-Dimensional Field-Effect Transistors Electrical Detection of Magnetic Spin Textures Using Pure Spin Currents in Graphene Ferroelectric Control of Interlayer Excitons in 3R-MoS2/MoSe2 Heterostructures Biological Complexity-Inspired Engineering of Tough and Anisotropic Protein-Based Materials for Adaptive Sensing Two-Photon-Excited Photoinduced Force Microscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1