{"title":"Boosting Reaction Kinetics with Viscous Nanowire Dispersions","authors":"Jurong Dong, Hongkun Cao, Zhiwei Yang, Zongze Zhang, Zhijie Yang, Lingxiang Jiang, Jingjing Wei","doi":"10.1021/jacs.5c02034","DOIUrl":null,"url":null,"abstract":"Higher viscosity typically slows chemical reactions by restricting molecular movement, while stirring accelerates reactions by enhancing reactant diffusion and collisions. However, in this study, we reveal that reaction rates in nanowire dispersions─with microscopic viscosity ∼300 times that of decane, can be enhanced by over an order of magnitude. Counterintuitively, stirring slows the reaction with higher stirring rates causing even greater deceleration. This phenomenon is observed in both photo- and thermally activated cyclic reactions. Molecular dynamics simulations and confocal laser scanning microscopy suggest that aliphatic chains grafted onto nanowires interact with anisotropic molecules, increasing their local concentrations near the nanowires. Notably, azobenzene photoisomerization is completely inhibited in the nanowire dispersion, despite completing within 30 s in the absence of nanowires. We propose that the aliphatic chains align reactive molecules directionally, while the confined space prevents bulky <i>cis</i>-isomer formation. These findings show that nanowires not only harvest and orient reactive molecules but also exclude bulky products, significantly enhancing the reaction kinetics in confined systems.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"11 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c02034","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Higher viscosity typically slows chemical reactions by restricting molecular movement, while stirring accelerates reactions by enhancing reactant diffusion and collisions. However, in this study, we reveal that reaction rates in nanowire dispersions─with microscopic viscosity ∼300 times that of decane, can be enhanced by over an order of magnitude. Counterintuitively, stirring slows the reaction with higher stirring rates causing even greater deceleration. This phenomenon is observed in both photo- and thermally activated cyclic reactions. Molecular dynamics simulations and confocal laser scanning microscopy suggest that aliphatic chains grafted onto nanowires interact with anisotropic molecules, increasing their local concentrations near the nanowires. Notably, azobenzene photoisomerization is completely inhibited in the nanowire dispersion, despite completing within 30 s in the absence of nanowires. We propose that the aliphatic chains align reactive molecules directionally, while the confined space prevents bulky cis-isomer formation. These findings show that nanowires not only harvest and orient reactive molecules but also exclude bulky products, significantly enhancing the reaction kinetics in confined systems.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.