Key Descriptors of Single-Atom Catalysts Supported on MXenes (Mo2C, Ti2C) Determining CO2 Activation

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-04-23 DOI:10.1021/acs.jpcc.4c07850
Anna Vidal-López, Judith Mahringer, Aleix Comas-Vives
{"title":"Key Descriptors of Single-Atom Catalysts Supported on MXenes (Mo2C, Ti2C) Determining CO2 Activation","authors":"Anna Vidal-López, Judith Mahringer, Aleix Comas-Vives","doi":"10.1021/acs.jpcc.4c07850","DOIUrl":null,"url":null,"abstract":"CO<sub>2</sub> activation is crucial to its upgrade to fuels and chemicals. In this work, we systematically studied CO<sub>2</sub> cleavage on single-atom catalysts (SACs) based on metals M = (Fe, Ru, Co, Rh, Ni, Pd, Pt, Cu, Ag, Au) supported on Mo<sub>2</sub>CO<sub><i>x</i></sub> (6/9 O ML) and Ti<sub>2</sub>CO<sub><i>x</i></sub> (7/9 O ML) MXenes via Density Functional Theory (DFT) calculations and Bader charge analysis to provide insights into the charge redistribution among the metal, MXene, interface, and CO<sub>2</sub> during the process. CO<sub>2</sub> activation involves a two-step mechanism, adsorbing at the M–MXene interface where it bends and acquires a highly anionic character and then breaks, forming CO* and O*. The energy barriers analyzed for the CO<sub>2</sub> activation on M/Mo<sub>2</sub>CO<sub><i>x</i></sub> and M/Ti<sub>2</sub>CO<sub><i>x</i></sub> surfaces show that Cu, Ni, Rh, and Pt on Mo<sub>2</sub>CO<sub><i>x</i></sub> and Cu, Ru, and Rh on Ti<sub>2</sub>CO<sub><i>x</i></sub> presented the lowest energy barriers. Comparing the two MXenes, the electrophilic nature of Mo atoms facilitates CO<sub>2</sub> cleavage, while the Ti atoms distribute charge differently, hindering the CO<sub>2</sub> activation process. The energy barriers toward CO<sub>2</sub> activation on M/Mo<sub>2</sub>CO<sub><i>x</i></sub> and M/Ti<sub>2</sub>CO<sub><i>x</i></sub> surfaces show that Cu, Ni, Rh, and Pt on Mo<sub>2</sub>CO<sub><i>x</i></sub> and Cu, Ru, and Rh on Ti<sub>2</sub>CO<sub><i>x</i></sub> presented the lowest energy barriers. Mo<sub>2</sub>CO<sub><i>x</i></sub> systems presented geometrical structures of the transition states that were more product-like aligning with the Hammond’s principle, implying exoenergetic processes and lower energy barriers in contrast to Ti<sub>2</sub>CO<sub><i>x</i></sub>. Moreover, the CO<sub>2</sub> activation on M/2D-Mo<sub>2</sub>C follows a Brønsted–Evans–Polanyi (BEP) relationship while M/2D-Ti<sub>2</sub>C breaks it, a crucial factor to identify better catalytic materials. The ExtraTreesRegressor machine learning algorithm effectively predicts adsorption and transition-state energies using a small set of descriptors. The findings underscore the importance of transition metal electronic states, charge transfer, and support structure effects for SACs on MXenes, providing valuable insights for the design of catalytic materials. This detailed analysis provides a deeper understanding of the mechanistic aspects of CO<sub>2</sub> activation, highlighting the role of single-atom metals and their interaction with metal-carbide surfaces.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"52 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c07850","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 activation is crucial to its upgrade to fuels and chemicals. In this work, we systematically studied CO2 cleavage on single-atom catalysts (SACs) based on metals M = (Fe, Ru, Co, Rh, Ni, Pd, Pt, Cu, Ag, Au) supported on Mo2COx (6/9 O ML) and Ti2COx (7/9 O ML) MXenes via Density Functional Theory (DFT) calculations and Bader charge analysis to provide insights into the charge redistribution among the metal, MXene, interface, and CO2 during the process. CO2 activation involves a two-step mechanism, adsorbing at the M–MXene interface where it bends and acquires a highly anionic character and then breaks, forming CO* and O*. The energy barriers analyzed for the CO2 activation on M/Mo2COx and M/Ti2COx surfaces show that Cu, Ni, Rh, and Pt on Mo2COx and Cu, Ru, and Rh on Ti2COx presented the lowest energy barriers. Comparing the two MXenes, the electrophilic nature of Mo atoms facilitates CO2 cleavage, while the Ti atoms distribute charge differently, hindering the CO2 activation process. The energy barriers toward CO2 activation on M/Mo2COx and M/Ti2COx surfaces show that Cu, Ni, Rh, and Pt on Mo2COx and Cu, Ru, and Rh on Ti2COx presented the lowest energy barriers. Mo2COx systems presented geometrical structures of the transition states that were more product-like aligning with the Hammond’s principle, implying exoenergetic processes and lower energy barriers in contrast to Ti2COx. Moreover, the CO2 activation on M/2D-Mo2C follows a Brønsted–Evans–Polanyi (BEP) relationship while M/2D-Ti2C breaks it, a crucial factor to identify better catalytic materials. The ExtraTreesRegressor machine learning algorithm effectively predicts adsorption and transition-state energies using a small set of descriptors. The findings underscore the importance of transition metal electronic states, charge transfer, and support structure effects for SACs on MXenes, providing valuable insights for the design of catalytic materials. This detailed analysis provides a deeper understanding of the mechanistic aspects of CO2 activation, highlighting the role of single-atom metals and their interaction with metal-carbide surfaces.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MXenes (Mo2C, Ti2C)单原子催化剂的关键描述符测定CO2活化
二氧化碳活化对其升级为燃料和化学品至关重要。本文通过密度泛函理论(DFT)计算和Bader电荷分析,系统地研究了基于Mo2COx (6/9 O ML)和Ti2COx (7/9 O ML) MXenes的金属M = (Fe, Ru, Co, Rh, Ni, Pd, Pt, Cu, Ag, Au)的单原子催化剂(SACs)在MXene (6/9 O ML)和MXene (7/9 O ML) MXenes上的CO2裂解过程,以了解该过程中金属、MXene、界面和CO2之间的电荷再分配。二氧化碳的活化涉及两步机制,在M-MXene界面上吸附,弯曲并获得高度阴离子特征,然后断裂,形成CO*和O*。CO2在M/Mo2COx和M/Ti2COx表面活化的能垒分析表明,Mo2COx表面的Cu、Ni、Rh、Pt和Ti2COx表面的Cu、Ru、Rh的能垒最低。对比两种MXenes, Mo原子的亲电性质有利于CO2的裂解,而Ti原子的电荷分布不同,阻碍了CO2的活化过程。M/Mo2COx和M/Ti2COx表面的CO2活化能垒表明,Mo2COx表面的Cu、Ni、Rh、Pt和Ti2COx表面的Cu、Ru、Rh具有最低的能垒。Mo2COx体系呈现出的过渡态几何结构更像产物,符合哈蒙德原理,与Ti2COx相比,这意味着放热过程和更低的能垒。此外,CO2在M/2D-Mo2C上的活化遵循Brønsted-Evans-Polanyi (BEP)关系,而M/2D-Ti2C则打破了这一关系,这是确定更好的催化材料的关键因素。ExtraTreesRegressor机器学习算法使用一小组描述符有效地预测吸附和过渡态能量。这些发现强调了过渡金属电子态、电荷转移和支持结构对SACs在MXenes上的重要性,为催化材料的设计提供了有价值的见解。这一详细的分析提供了对二氧化碳活化机理的更深入的理解,突出了单原子金属的作用及其与金属碳化物表面的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Metadynamics Simulations of Vinyl Polymer-Assisted Carbon Nanotube Dispersion for Next-Generation Batteries Intelligent Fitting Identification of the Best Equation for the Determination of Gold Nanoparticle Size from the Optical Absorption Spectrum Electronic Structure Modulation of Borophene via N, S Modification and Iridium Infusion for Superior Oxygen Evolution Reaction Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1