K Dorovini-Zis, P D Bowman, A L Betz, G W Goldstein
{"title":"Formation of a barrier by brain microvessel endothelial cells in culture.","authors":"K Dorovini-Zis, P D Bowman, A L Betz, G W Goldstein","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial cells (EC) isolated from bovine brain microvessels produce a continuous monolayer when grown in primary culture. The EC are joined together by tight junctions and contain few pinocytotic vesicles. Horseradish peroxidase (HRP) is unable to penetrate this in vitro barrier system. Exposure of the cells to 1.6 M arabinose produces a reversible separation of the tight junctions with penetration of HRP across the monolayer in a pattern similar to that observed in animals after infusion of hyperosmotic solutions into the carotid artery. The behavior of brain microvascular cells in culture suggest that they retain properties important to the formation of the blood-brain barrier.</p>","PeriodicalId":12183,"journal":{"name":"Federation proceedings","volume":"46 8","pages":"2521-2"},"PeriodicalIF":0.0000,"publicationDate":"1987-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federation proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Endothelial cells (EC) isolated from bovine brain microvessels produce a continuous monolayer when grown in primary culture. The EC are joined together by tight junctions and contain few pinocytotic vesicles. Horseradish peroxidase (HRP) is unable to penetrate this in vitro barrier system. Exposure of the cells to 1.6 M arabinose produces a reversible separation of the tight junctions with penetration of HRP across the monolayer in a pattern similar to that observed in animals after infusion of hyperosmotic solutions into the carotid artery. The behavior of brain microvascular cells in culture suggest that they retain properties important to the formation of the blood-brain barrier.