{"title":"beta,beta'-Iminodipropionitrile (IDPN) neurotoxicity: a mechanistic hypothesis for toxic activation.","authors":"A R Jacobson, S H Coffin, C M Shearson, L M Sayre","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>beta,beta'-Iminodipropionitrile (IDPN) induces neurobehavioral aberrations in experimental animals and massive focal accumulations of neurofilaments in proximal regions of axons. A hypothesis is presented to explain the neurotoxic activity of IDPN in terms of oxidative amine metabolism, wherein a resonance-stabilized cyanoenamine 3-(2-cyanoethylamino)acrylonitrile (dehydro-IDPN, 5) could be generated. Chemical studies were conducted to verify the likelihood of the proposed enzymatic transformations and their consistency with the known excreted metabolites. Dehydro-IDPN gives rise to a slow hydrolytic release of cyanoacetaldehyde at pH 7, which can transform protein-based amino groups to cyanoenamines, though the latter derivatives could be formed directly through a relatively rapid transamination reaction with dehydro-IDPN at pH 7. Kinetic studies were conducted to assess the balance between competing hydrolysis (pseudo-first order) and transamination (second order) of cyanoenamines as a function of pH. Cyanoethenylation of the epsilon-amino groups of critical lysine residues in the \"tail-piece\" domains of neurofilament (NF) subunit proteins could disrupt the supramolecular coulombic interactions thought to contribute to maintenance of cytoskeletal caliber. This could result in a defect in the slow axonal transport of NF, and subsequently in the formation of proximal axonal enlargements.</p>","PeriodicalId":77750,"journal":{"name":"Molecular toxicology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular toxicology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
beta,beta'-Iminodipropionitrile (IDPN) induces neurobehavioral aberrations in experimental animals and massive focal accumulations of neurofilaments in proximal regions of axons. A hypothesis is presented to explain the neurotoxic activity of IDPN in terms of oxidative amine metabolism, wherein a resonance-stabilized cyanoenamine 3-(2-cyanoethylamino)acrylonitrile (dehydro-IDPN, 5) could be generated. Chemical studies were conducted to verify the likelihood of the proposed enzymatic transformations and their consistency with the known excreted metabolites. Dehydro-IDPN gives rise to a slow hydrolytic release of cyanoacetaldehyde at pH 7, which can transform protein-based amino groups to cyanoenamines, though the latter derivatives could be formed directly through a relatively rapid transamination reaction with dehydro-IDPN at pH 7. Kinetic studies were conducted to assess the balance between competing hydrolysis (pseudo-first order) and transamination (second order) of cyanoenamines as a function of pH. Cyanoethenylation of the epsilon-amino groups of critical lysine residues in the "tail-piece" domains of neurofilament (NF) subunit proteins could disrupt the supramolecular coulombic interactions thought to contribute to maintenance of cytoskeletal caliber. This could result in a defect in the slow axonal transport of NF, and subsequently in the formation of proximal axonal enlargements.