Control of cell growth and division in Saccharomyces cerevisiae.

S D Hanes, R Koren, K A Bostian
{"title":"Control of cell growth and division in Saccharomyces cerevisiae.","authors":"S D Hanes,&nbsp;R Koren,&nbsp;K A Bostian","doi":"10.3109/10409238609113611","DOIUrl":null,"url":null,"abstract":"<p><p>Considerable advances have been made in recent years in our understanding of the biochemistry of protein and nucleic acid synthesis and, particularly, the molecular biology of gene expression in eukaryotes. The yeast Saccharomyces cerevisiae, and to a lesser extent Schizosaccharomyces pombe, has had a preeminent role as a focus for these studies, principally because of the facility with which these organisms can be experimentally manipulated biochemically and genetically. This review will be designed to critically examine and integrate recent advances in several vital areas of regulatory control of enzyme synthesis in yeast: structure and organization of DNA, transcriptional regulation, post-transcriptional modification, control of translation, post-translational modification and secretion, and cell-cycle modulation. It will attempt to emphasize and illustrate, where detailed information is available, principal underlying molecular mechanisms, and it will attempt to make relevant comparisons of this material to inferred and demonstrated facets of regulatory control of enzyme and protein synthesis in higher eukaryotes.</p>","PeriodicalId":75744,"journal":{"name":"CRC critical reviews in biochemistry","volume":"21 2","pages":"153-223"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10409238609113611","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRC critical reviews in biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10409238609113611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Considerable advances have been made in recent years in our understanding of the biochemistry of protein and nucleic acid synthesis and, particularly, the molecular biology of gene expression in eukaryotes. The yeast Saccharomyces cerevisiae, and to a lesser extent Schizosaccharomyces pombe, has had a preeminent role as a focus for these studies, principally because of the facility with which these organisms can be experimentally manipulated biochemically and genetically. This review will be designed to critically examine and integrate recent advances in several vital areas of regulatory control of enzyme synthesis in yeast: structure and organization of DNA, transcriptional regulation, post-transcriptional modification, control of translation, post-translational modification and secretion, and cell-cycle modulation. It will attempt to emphasize and illustrate, where detailed information is available, principal underlying molecular mechanisms, and it will attempt to make relevant comparisons of this material to inferred and demonstrated facets of regulatory control of enzyme and protein synthesis in higher eukaryotes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酿酒酵母细胞生长和分裂的控制。
近年来,我们对蛋白质和核酸合成的生物化学,特别是真核生物基因表达的分子生物学的理解取得了相当大的进展。酵母酿酒酵母,以及在较小程度上的裂糖酵母,作为这些研究的重点已经发挥了卓越的作用,主要是因为这些生物可以在实验上进行生化和遗传操作。这篇综述将严格审查和整合酵母酶合成调控控制的几个重要领域的最新进展:DNA的结构和组织,转录调控,转录后修饰,翻译控制,翻译后修饰和分泌,以及细胞周期调节。它将试图强调和说明,在有详细信息的情况下,主要的潜在分子机制,并将试图将这些材料与推断和证明的高等真核生物中酶和蛋白质合成的调节控制方面进行相关比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enzymes of nucleotide metabolism: the significance of subunit size and polymer size for biological function and regulatory properties. Spectrin and related molecules. Transcription elements and factors of RNA polymerase B promoters of higher eukaryotes. Initiation of coagulation by tissue factor. Interpreting the behavior of enzymes: purpose or pedigree?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1