{"title":"Metallothionein gene regulation in Menkes' disease.","authors":"A Leone","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Metallothioneins are a family of ubiquitous, cysteine rich proteins, whose amino acidic and genomic sequences have been highly conserved during evolution. MT synthesis is induced by heavy metals, glucocorticoids and a bacterial lipopolysaccharide in vivo and in vitro. MT forms stable complexes with heavy metals. One MTIIA gene, four MTI class genes and five pseudogenes have been isolated in humans. The cluster of MT genes is located on chromosome 16. The cloned, transfected genes retain metal inducibility. The first 150 bp of the 5' flanking region of mouse and human MT genes are essential for transcription and metal regulation. Two control regions have been identified. The distal region, between -151 and -78 is essential for efficient transcription and binding of cellular factor(s) which regulates MT gene expression. In Menkes' disease, a lethal X-linked recessive disorder, copper accumulates intracellularly bound to MT. Low doses of copper induce MT synthesis in Menkes' fibroblasts, but not in normal controls. Transfection experiments using the mouse MTI promoter fused to CAT show that the effect of copper in MT transcription is in trans. Menkes' cells are more sensitive to copper than normal controls and respond to copper poisoning by synthesizing two heat-shock like proteins. A mutation affecting copper transport or metabolism is discussed.</p>","PeriodicalId":75908,"journal":{"name":"Horizons in biochemistry and biophysics","volume":"8 ","pages":"207-56"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horizons in biochemistry and biophysics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Metallothioneins are a family of ubiquitous, cysteine rich proteins, whose amino acidic and genomic sequences have been highly conserved during evolution. MT synthesis is induced by heavy metals, glucocorticoids and a bacterial lipopolysaccharide in vivo and in vitro. MT forms stable complexes with heavy metals. One MTIIA gene, four MTI class genes and five pseudogenes have been isolated in humans. The cluster of MT genes is located on chromosome 16. The cloned, transfected genes retain metal inducibility. The first 150 bp of the 5' flanking region of mouse and human MT genes are essential for transcription and metal regulation. Two control regions have been identified. The distal region, between -151 and -78 is essential for efficient transcription and binding of cellular factor(s) which regulates MT gene expression. In Menkes' disease, a lethal X-linked recessive disorder, copper accumulates intracellularly bound to MT. Low doses of copper induce MT synthesis in Menkes' fibroblasts, but not in normal controls. Transfection experiments using the mouse MTI promoter fused to CAT show that the effect of copper in MT transcription is in trans. Menkes' cells are more sensitive to copper than normal controls and respond to copper poisoning by synthesizing two heat-shock like proteins. A mutation affecting copper transport or metabolism is discussed.