Ca paradox in neural injury: a hypothesis.

W Young
{"title":"Ca paradox in neural injury: a hypothesis.","authors":"W Young","doi":"10.1089/cns.1986.3.235","DOIUrl":null,"url":null,"abstract":"<p><p>The deleterious effects of Ca ionic entry into neurons has been speculated to be a final common pathway of cell death. However, a direct cause-effect relationship between Ca and neuronal death has been difficult to establish. Cells dying from any cause will accumulate Ca. The entry of Ca into neurons and the subsequent pathological changes associated with Ca entry consequently may be manifestations rather than causes of cell death. Recent work showing that extracellular Ca ionic activity becomes profoundly depressed in injured spinal cord and ischemic cerebral cortex prompted a new hypothesis on Ca mediated damage. We propose that the initial fall in extracellular Ca activity, resulting from the death of some cells in the tissue, increases the susceptibility of the surviving cells to Ca entry when extracellular Ca activity levels normalize and that this accounts for part of the secondary damage that has been observed in neural injury models. Such a phenomenon has been described in cardiac tissues. Dubbed Ca paradox, this phenomenon occurs when heart cells are perfused with Ca-free solutions for several minutes followed by the return to normal Ca-containing solutions. The cardiac cells die and undergo physiological, morphological, biochemical, and other changes. The evidence supporting a Ca paradox phenomenon in injured neural tissues is summarized. The therapeutic implications of Ca paradox in neural tissue injury are discussed.</p>","PeriodicalId":77690,"journal":{"name":"Central nervous system trauma : journal of the American Paralysis Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/cns.1986.3.235","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system trauma : journal of the American Paralysis Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/cns.1986.3.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

The deleterious effects of Ca ionic entry into neurons has been speculated to be a final common pathway of cell death. However, a direct cause-effect relationship between Ca and neuronal death has been difficult to establish. Cells dying from any cause will accumulate Ca. The entry of Ca into neurons and the subsequent pathological changes associated with Ca entry consequently may be manifestations rather than causes of cell death. Recent work showing that extracellular Ca ionic activity becomes profoundly depressed in injured spinal cord and ischemic cerebral cortex prompted a new hypothesis on Ca mediated damage. We propose that the initial fall in extracellular Ca activity, resulting from the death of some cells in the tissue, increases the susceptibility of the surviving cells to Ca entry when extracellular Ca activity levels normalize and that this accounts for part of the secondary damage that has been observed in neural injury models. Such a phenomenon has been described in cardiac tissues. Dubbed Ca paradox, this phenomenon occurs when heart cells are perfused with Ca-free solutions for several minutes followed by the return to normal Ca-containing solutions. The cardiac cells die and undergo physiological, morphological, biochemical, and other changes. The evidence supporting a Ca paradox phenomenon in injured neural tissues is summarized. The therapeutic implications of Ca paradox in neural tissue injury are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经损伤中的Ca悖论:一个假说。
钙离子进入神经元的有害作用被推测是细胞死亡的最后共同途径。然而,Ca与神经元死亡之间的直接因果关系一直难以确定。任何原因导致的细胞死亡都会积累钙。钙进入神经元以及随后与钙进入相关的病理变化可能是细胞死亡的表现而不是原因。最近的研究表明,细胞外钙离子活性在损伤的脊髓和缺血的大脑皮层中发生了严重的抑制,这促使人们对钙介导的损伤提出了新的假设。我们提出,细胞外钙活性的初始下降是由组织中一些细胞的死亡引起的,当细胞外钙活性水平正常化时,存活细胞对钙进入的易感性增加,这解释了在神经损伤模型中观察到的部分继发性损伤。这种现象在心脏组织中已被描述过。这种现象被称为钙悖论,当心脏细胞灌注无钙溶液几分钟后,又恢复到正常的含钙溶液时,就会发生这种现象。心肌细胞死亡并经历生理、形态、生化等方面的变化。总结了损伤神经组织中Ca悖论现象的证据。讨论了Ca悖论在神经组织损伤中的治疗意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Treatment of experimental spinal trauma with thyrotropin-releasing hormone: central serotonergic and vascular mechanisms of action. Opiate-receptor antagonists, thyrotropin-releasing hormone (TRH), and TRH analogs in the treatment of spinal cord injury. The post-injury responses in trauma and ischemia: secondary injury or protective mechanisms? Total phosphate determination in brain tissues: a method for regional determination of total phosphate in rat brain. Evaluation and diagnosis of cervical spine injuries: a review of the literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1