{"title":"A study of intercellular bridges during spermatogenesis in the rat.","authors":"J E Weber, L D Russell","doi":"10.1002/aja.1001800102","DOIUrl":null,"url":null,"abstract":"<p><p>A morphological evaluation of intercellular bridges was undertaken during rat spermatogenesis. The dimensions and relationships of the bridges were shown to vary during different phases of spermatogenesis. Cellular divisions of spermatogonia and spermatocytes resulted in the partitioning of pre-existing bridges by complex structures termed bridge partitioning complexes, which are described in detail, as is the process whereby new bridges are formed. The structure of premeiotic bridges was generally consistent; however, during spermiogenesis, the structure of bridges and bridge contents were modified at specific phases of their development. The plasma membrane density associated with the cytoplasmic aspect of early step 1 spermatids separated into multiple dense bands that encircled the peripheral aspect of late step 1 spermatid bridges. By step 2 of spermiogenesis, these dense bands became associated with several cisternae of endoplasmic reticulum, which later coalesced into a single saccule that completely encircled the bridge structure by step 4. At steps 10-13 of spermiogenesis, the single saccule of endoplasmic reticulum vesiculated into many smaller cisternae. Also, filament-bounded densities (measuring 10-12 nm in diameter) appeared within the bridge channel. At step 17 of spermiogenesis, the filament-bounded densities were no longer apparent, but an anastomosing network of endoplasmic reticulum, often in the configuration of a sphere, occupied the entire central region of the bridge. In step 19 spermatids, the smooth endoplasmic reticulum within the bridge channel and the multiple cisternae lining the bridge density were gradually displaced. The subsurface density of bridges gradually lost its prominence. Some cytoplasmic lobes were connected by extremely narrow (approximately 22 nm) cytoplasmic channels. Similar-appearing channels were seen on the surface zone of cytoplasmic lobes or residual bodies, this observation suggesting that channels were sites of severence of bridges. Just prior to the separation or disengagement of the spermatid from the cytoplasmic lobe, selected bridges appeared to open to form large masses. After spermiation, residual bodies were not found joined by bridges; but from the size of some of the residual bodies, it was suspected that they were formed by coalescence of more than one cytoplasmic lobe. Freeze-fracture demonstrated few intramembranous particles on either the P or E face of the plasma membrane forming the bridge; this finding suggested bridge structures restricted free lateral movement of membrane constituents across the bridge.(ABSTRACT TRUNCATED AT 400 WORDS)</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"180 1","pages":"1-24"},"PeriodicalIF":0.0000,"publicationDate":"1987-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001800102","citationCount":"121","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Anatomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aja.1001800102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121
Abstract
A morphological evaluation of intercellular bridges was undertaken during rat spermatogenesis. The dimensions and relationships of the bridges were shown to vary during different phases of spermatogenesis. Cellular divisions of spermatogonia and spermatocytes resulted in the partitioning of pre-existing bridges by complex structures termed bridge partitioning complexes, which are described in detail, as is the process whereby new bridges are formed. The structure of premeiotic bridges was generally consistent; however, during spermiogenesis, the structure of bridges and bridge contents were modified at specific phases of their development. The plasma membrane density associated with the cytoplasmic aspect of early step 1 spermatids separated into multiple dense bands that encircled the peripheral aspect of late step 1 spermatid bridges. By step 2 of spermiogenesis, these dense bands became associated with several cisternae of endoplasmic reticulum, which later coalesced into a single saccule that completely encircled the bridge structure by step 4. At steps 10-13 of spermiogenesis, the single saccule of endoplasmic reticulum vesiculated into many smaller cisternae. Also, filament-bounded densities (measuring 10-12 nm in diameter) appeared within the bridge channel. At step 17 of spermiogenesis, the filament-bounded densities were no longer apparent, but an anastomosing network of endoplasmic reticulum, often in the configuration of a sphere, occupied the entire central region of the bridge. In step 19 spermatids, the smooth endoplasmic reticulum within the bridge channel and the multiple cisternae lining the bridge density were gradually displaced. The subsurface density of bridges gradually lost its prominence. Some cytoplasmic lobes were connected by extremely narrow (approximately 22 nm) cytoplasmic channels. Similar-appearing channels were seen on the surface zone of cytoplasmic lobes or residual bodies, this observation suggesting that channels were sites of severence of bridges. Just prior to the separation or disengagement of the spermatid from the cytoplasmic lobe, selected bridges appeared to open to form large masses. After spermiation, residual bodies were not found joined by bridges; but from the size of some of the residual bodies, it was suspected that they were formed by coalescence of more than one cytoplasmic lobe. Freeze-fracture demonstrated few intramembranous particles on either the P or E face of the plasma membrane forming the bridge; this finding suggested bridge structures restricted free lateral movement of membrane constituents across the bridge.(ABSTRACT TRUNCATED AT 400 WORDS)