{"title":"Degradation and Speciation of Li Salts during XPS Analysis for Battery Research","authors":"Weilai Yu, Zhiao Yu, Yi Cui and Zhenan Bao*, ","doi":"10.1021/acsenergylett.2c01587","DOIUrl":null,"url":null,"abstract":"<p >X-ray photoelectron spectroscopy (XPS) is one of the most common techniques to characterize the solid–electrolyte interphase (SEI) in battery research. However, residual salt or solvent can produce spectroscopic artifacts that complicate the evaluation of actual SEI chemistry. Herein, we present a systematic XPS study of three different Li salts, namely lithium bis(fluorosulfonyl)imide (LiFSI), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and lithium hexafluorophosphate (LiPF<sub>6</sub>). A side-by-side comparison reveals that the binding energies of constituent elements sensitively shift in response to their distinct chemical environments. Strikingly, all three Li salts consistently transformed into LiF under Ar<sup>+</sup> sputtering, pointing out the importance of complete salt removal before XPS analysis. Residue from organic solvent or impurities from sample surface to bulk were found specific to the solvent–salt combination, which should be distinguished from the real organic SEI. Overall, this set of benchmark studies not only offers a valuable reference for peak assignment but also emphasizes the significance of control experiments to avoid potential pitfalls while identifying actual SEI components.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"7 10","pages":"3270–3275"},"PeriodicalIF":19.3000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.2c01587","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 21
Abstract
X-ray photoelectron spectroscopy (XPS) is one of the most common techniques to characterize the solid–electrolyte interphase (SEI) in battery research. However, residual salt or solvent can produce spectroscopic artifacts that complicate the evaluation of actual SEI chemistry. Herein, we present a systematic XPS study of three different Li salts, namely lithium bis(fluorosulfonyl)imide (LiFSI), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and lithium hexafluorophosphate (LiPF6). A side-by-side comparison reveals that the binding energies of constituent elements sensitively shift in response to their distinct chemical environments. Strikingly, all three Li salts consistently transformed into LiF under Ar+ sputtering, pointing out the importance of complete salt removal before XPS analysis. Residue from organic solvent or impurities from sample surface to bulk were found specific to the solvent–salt combination, which should be distinguished from the real organic SEI. Overall, this set of benchmark studies not only offers a valuable reference for peak assignment but also emphasizes the significance of control experiments to avoid potential pitfalls while identifying actual SEI components.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.