{"title":"Synthesis and migration of 3H-fucose-labeled glycoproteins in the ciliary epithelium of the eye: effects of microtubule-disrupting drugs.","authors":"G Bennett, A Haddad","doi":"10.1002/aja.1001770403","DOIUrl":null,"url":null,"abstract":"<p><p>3H-fucose was injected intravenously or intravitreously into albino rats. After time intervals of 10, 40, and 50 min, 1, 1.5, and 4 hr, 1, 3, and 7 days, and 1, 2, and 4 weeks after injection, the animals were sacrificed by intracardiac perfusion with glutaraldehyde. Samples of the ciliary body were prepared for light and electron microscope radioautography. Light microscope autoradiographs showed that the cells of both the inner and outer layers of ciliary epithelium actively incorporated 3H-fucose label in a reaction that peaked in intensity at 4 hr after injection, and then progressively declined. Electron microscope radioautographs revealed that, at early time intervals, most of the label was localized to the Golgi apparatus. With time, the plasma membrane of both cell types became increasingly labeled, and accounted for 60-70% of the total silver grains at 4 hr after injection. Adjacent to the basal cell surface of the inner layer cells, the fibers of the zonula became increasingly labeled from 1.5 hr onwards, providing strong evidence that these cells secrete glycoproteins to the zonula. When vinblastine was administered 30 min before 3H-fucose injection, followed by sacrifice 1.5 hr later, a much larger proportion of label remained localized to the Golgi apparatus than in controls, and the plasma membrane and zonula were much less labeled. These results suggest that, as documented in other cell types, microtubules may play a role in the intracellular transport of membrane and secretory glycoproteins in these cells.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"177 4","pages":"441-55"},"PeriodicalIF":0.0000,"publicationDate":"1986-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001770403","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Anatomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aja.1001770403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
3H-fucose was injected intravenously or intravitreously into albino rats. After time intervals of 10, 40, and 50 min, 1, 1.5, and 4 hr, 1, 3, and 7 days, and 1, 2, and 4 weeks after injection, the animals were sacrificed by intracardiac perfusion with glutaraldehyde. Samples of the ciliary body were prepared for light and electron microscope radioautography. Light microscope autoradiographs showed that the cells of both the inner and outer layers of ciliary epithelium actively incorporated 3H-fucose label in a reaction that peaked in intensity at 4 hr after injection, and then progressively declined. Electron microscope radioautographs revealed that, at early time intervals, most of the label was localized to the Golgi apparatus. With time, the plasma membrane of both cell types became increasingly labeled, and accounted for 60-70% of the total silver grains at 4 hr after injection. Adjacent to the basal cell surface of the inner layer cells, the fibers of the zonula became increasingly labeled from 1.5 hr onwards, providing strong evidence that these cells secrete glycoproteins to the zonula. When vinblastine was administered 30 min before 3H-fucose injection, followed by sacrifice 1.5 hr later, a much larger proportion of label remained localized to the Golgi apparatus than in controls, and the plasma membrane and zonula were much less labeled. These results suggest that, as documented in other cell types, microtubules may play a role in the intracellular transport of membrane and secretory glycoproteins in these cells.