A new methodology for measuring solid/liquid interfacial energy

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2023-03-01 DOI:10.1016/j.jcis.2022.10.101
Sreya Sarkar , Mohamad Jafari Gukeh , Tamal Roy , Harshad Gaikwad , Francesco Maria Bellussi , Shashwata Moitra , Constantine M. Megaridis
{"title":"A new methodology for measuring solid/liquid interfacial energy","authors":"Sreya Sarkar ,&nbsp;Mohamad Jafari Gukeh ,&nbsp;Tamal Roy ,&nbsp;Harshad Gaikwad ,&nbsp;Francesco Maria Bellussi ,&nbsp;Shashwata Moitra ,&nbsp;Constantine M. Megaridis","doi":"10.1016/j.jcis.2022.10.101","DOIUrl":null,"url":null,"abstract":"<div><h3><em>Hypothesis</em></h3><p><span>The interfacial energy </span><span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>sl</mi></mrow></msub></mrow></math></span><span> between a solid and a liquid designates the affinity between these two phases, and in turn, the macroscopic wettability of the surface by the fluid. This property is needed for precise control of fluid-transport phenomena that affect the operation/quality of commercial devices/products. Although several indirect or theoretical approaches can quantify the solid/liquid interfacial energy, no direct experimental procedure exists to measure this property for realistic (i.e. rough) surfaces. Makkonen hypothesized that the frictional resistance force per unit contact-line length is equal to the interfacial energy on </span><em>smooth</em> surfaces, which, however, are rarely found in practice. Consequently, the hypothesis that Makkonen’s assumption may also hold for <em>rough</em> surfaces (which are far more common in practice) arises naturally. If so, a reliable and simple experimental methodology of obtaining <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>sl</mi></mrow></msub></mrow></math></span> for rough surfaces can be put forth. This is accomplished by performing dynamic contact-angle experiments on rough surfaces that quantify the relationship between the frictional resistance force per unit contact-line length acting on an advancing liquid (<span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>a</mi></mrow></msub></mrow></math></span><span>) and the surface roughness in wetting configurations.</span></p></div><div><h3><em>Experiment</em></h3><p><span>We perform static<span> and advancing contact-line experiments with aqueous and organic liquids on different hydrophilic surfaces (Al, Cu, Si) with varying Wenzel roughnesses in the range 1-2. These parameters are combined with the liquid’s known surface tension to determine </span></span><span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>a</mi></mrow></msub></mrow></math></span>.</p></div><div><h3><em>Findings</em></h3><p><span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>a</mi></mrow></msub></mrow></math></span><span> rises linearly with the surface roughness. Analysis based on existing theories of wetting and contact-angle hysteresis reveals that the slope of </span><span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>a</mi></mrow></msub></mrow></math></span> vs.<!--> <!-->Wenzel roughness is equal to the solid/liquid interfacial energy, which is thus determined experimentally with the present measurements. Interfacial energies obtained with this experimental approach are within 12% of theoretically predicted values for several solid/liquid pairs, thereby validating this methodology.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"633 ","pages":"Pages 800-807"},"PeriodicalIF":9.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979722018720","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

Abstract

Hypothesis

The interfacial energy γsl between a solid and a liquid designates the affinity between these two phases, and in turn, the macroscopic wettability of the surface by the fluid. This property is needed for precise control of fluid-transport phenomena that affect the operation/quality of commercial devices/products. Although several indirect or theoretical approaches can quantify the solid/liquid interfacial energy, no direct experimental procedure exists to measure this property for realistic (i.e. rough) surfaces. Makkonen hypothesized that the frictional resistance force per unit contact-line length is equal to the interfacial energy on smooth surfaces, which, however, are rarely found in practice. Consequently, the hypothesis that Makkonen’s assumption may also hold for rough surfaces (which are far more common in practice) arises naturally. If so, a reliable and simple experimental methodology of obtaining γsl for rough surfaces can be put forth. This is accomplished by performing dynamic contact-angle experiments on rough surfaces that quantify the relationship between the frictional resistance force per unit contact-line length acting on an advancing liquid (Fp,a) and the surface roughness in wetting configurations.

Experiment

We perform static and advancing contact-line experiments with aqueous and organic liquids on different hydrophilic surfaces (Al, Cu, Si) with varying Wenzel roughnesses in the range 1-2. These parameters are combined with the liquid’s known surface tension to determine Fp,a.

Findings

Fp,a rises linearly with the surface roughness. Analysis based on existing theories of wetting and contact-angle hysteresis reveals that the slope of Fp,a vs. Wenzel roughness is equal to the solid/liquid interfacial energy, which is thus determined experimentally with the present measurements. Interfacial energies obtained with this experimental approach are within 12% of theoretically predicted values for several solid/liquid pairs, thereby validating this methodology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种测量固液界面能的新方法
假设固体和液体之间的界面能γ - sl表示这两相之间的亲合力,进而表示流体对表面的宏观润湿性。这种特性对于精确控制影响商业设备/产品运行/质量的流体传输现象是必需的。虽然有几种间接或理论方法可以量化固/液界面能,但没有直接的实验方法可以测量现实(即粗糙)表面的这种特性。Makkonen假设单位接触线长度的摩擦阻力等于光滑表面上的界面能,但在实践中很少发现。因此,Makkonen的假设也适用于粗糙表面(这在实践中更为常见)的假设自然产生了。这样,就可以提出一种可靠、简便的粗糙表面γ - sl的实验方法。这是通过在粗糙表面上进行动态接触角实验来实现的,该实验量化了作用在前进液体(Fp,a)上的单位接触线长度的摩擦阻力与润湿配置下表面粗糙度之间的关系。实验我们在不同的亲水性表面(Al, Cu, Si)上对含水和有机液体进行静态和推进接触线实验,其温泽尔粗糙度在1-2范围内变化。这些参数结合已知的液体表面张力来确定Fp,a。发现,a随表面粗糙度线性上升。基于现有的润湿理论和接触角滞后理论分析表明,Fp,a与Wenzel粗糙度的斜率等于固/液界面能,因此可以用本测量结果进行实验确定。用这种实验方法获得的界面能在几个固体/液体对的理论预测值的12%以内,从而验证了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Regulating the dispersion of CuO over SiO2 surface for selective oxidation of isobutane to tert-butanol. Photoclick surface modification of MOF-808 for galactose-mediated targeted chemotherapy. A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries. Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe2O3 photoanode for efficient photoelectrochemical water oxidation. In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1