Relationships between brain catecholamine synthesis, pituitary adrenal function and the production of hypertension during prolonged exposure to environmental stress
{"title":"Relationships between brain catecholamine synthesis, pituitary adrenal function and the production of hypertension during prolonged exposure to environmental stress","authors":"Harold H. Smookler, Joseph P. Buckley","doi":"10.1016/0028-3908(69)90032-X","DOIUrl":null,"url":null,"abstract":"<div><p>Male rats were subjected to environmental stresses consisting of flashing lights, audiogenic stimulation and oscillation for 20 weeks on a randomized schedule. The mean systolic blood pressure in the stressed animals rose to 150mm Hg±1.01 by week 8 and ranged between 150 and 160 mm Hg for the remaining 12 weeks, whereas the mean systolic pressure of the non-stressed animals fluctuated between 110 and 120mm Hg throughout this same period of time. Serum corticosterone level in the stressed animals were approximately 3 times higher than controls for the first 4 weeks of exposure; however, by the end of week 5. serum corticosterone declined dramatically in the stressed group and was significantly lower than controls, after which serum corticosterone levels exhibited a cyclic pattern at approximately 6-week intervals. No significant alterations were observed in brain NE and DA and serum FFA throughout the 20-week stress exposure. In a second study, rats received 100 mg kg p.o. of<span>L</span>-α-methyltyrosine. At the end of weeks 2 and 4, brain NE was depleted by more than 80° in the stressed treated group, whereas brain NE in the non-stressed treated animals was depleted by approximately 45°. indicating a significant increase in the turnover of brain NE The elevated turnover of brain NE returned to control values by the end of the 6th week. In addition, a-MT prevented the stress-induced elevation in systolic blood pressure. These data indicate a close temporal relationship between brain NE synthesis rate and adrenocortical steroid secretion as well as demonstrating that a-MT is an effective antihypertensive agent in stress-induced hypertension.</p></div>","PeriodicalId":14111,"journal":{"name":"International journal of neuropharmacology","volume":"8 1","pages":"Pages 33-41"},"PeriodicalIF":0.0000,"publicationDate":"1969-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0028-3908(69)90032-X","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neuropharmacology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/002839086990032X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52
Abstract
Male rats were subjected to environmental stresses consisting of flashing lights, audiogenic stimulation and oscillation for 20 weeks on a randomized schedule. The mean systolic blood pressure in the stressed animals rose to 150mm Hg±1.01 by week 8 and ranged between 150 and 160 mm Hg for the remaining 12 weeks, whereas the mean systolic pressure of the non-stressed animals fluctuated between 110 and 120mm Hg throughout this same period of time. Serum corticosterone level in the stressed animals were approximately 3 times higher than controls for the first 4 weeks of exposure; however, by the end of week 5. serum corticosterone declined dramatically in the stressed group and was significantly lower than controls, after which serum corticosterone levels exhibited a cyclic pattern at approximately 6-week intervals. No significant alterations were observed in brain NE and DA and serum FFA throughout the 20-week stress exposure. In a second study, rats received 100 mg kg p.o. ofL-α-methyltyrosine. At the end of weeks 2 and 4, brain NE was depleted by more than 80° in the stressed treated group, whereas brain NE in the non-stressed treated animals was depleted by approximately 45°. indicating a significant increase in the turnover of brain NE The elevated turnover of brain NE returned to control values by the end of the 6th week. In addition, a-MT prevented the stress-induced elevation in systolic blood pressure. These data indicate a close temporal relationship between brain NE synthesis rate and adrenocortical steroid secretion as well as demonstrating that a-MT is an effective antihypertensive agent in stress-induced hypertension.