{"title":"Characteristics of aldosterone binding in rat and human serum.","authors":"H Coirini, A White, E T Marusic, A F De Nicola","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Binding of cortisol and corticosterone by serum proteins is well established, but discrepancies exist regarding aldosterone. We have observed that approximately 1% of 3H-aldosterone incubated with rat serum was bound in a time-dependent process, although it was not competed by a large excess of non-radioactive aldosterone, assessed by Florisil separation or gel filtration on Sephadex G-50 columns. After electrophoresis on cellulose acetate of rat serum incubated with 3H-aldosterone, specific or non-specific binding to protein fractions was not obtained. Further, a 10 000-fold molar excess of aldosterone (10 microM) displaced only 34% of the bound 3H-aldosterone to rat serum, preventing the calculation of the IC50 value. Increasing concentrations of aldosterone (3-83 nM) did not displace 3H-corticosterone bound in rat serum to presumably corticosterone binding globulin (CBG). In contrast, inhibition of this binding by 3-83 nM corticosterone was concentration dependent, showing an IC50 value of 10(-8) M. In normal human serum, binding of 3H-aldosterone demonstrated competition by a 100 and 1 000-fold excess of aldosterone. Displacement curves of 3H corticosterone bound to human serum by 1.7-75 nM corticosterone or 0.05-8.8 microM aldosterone yielded IC50 values in the range of 10(-8) M for corticosterone and 10(-6) M for aldosterone. With horse serum, aldosterone's binding affinity was three orders of magnitude lower than that of corticosterone. These studies suggest that in the rat aldosterone was loosely and weakly bound to a high capacity binder, possibly albumin. In agreement with the work of others, in humans aldosterone may be bound to both CBG and albumin. The current data do not substantiate for the presence of specific aldosterone binding proteins in serum.</p>","PeriodicalId":7131,"journal":{"name":"Acta physiologica latino americana","volume":"32 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"1982-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta physiologica latino americana","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Binding of cortisol and corticosterone by serum proteins is well established, but discrepancies exist regarding aldosterone. We have observed that approximately 1% of 3H-aldosterone incubated with rat serum was bound in a time-dependent process, although it was not competed by a large excess of non-radioactive aldosterone, assessed by Florisil separation or gel filtration on Sephadex G-50 columns. After electrophoresis on cellulose acetate of rat serum incubated with 3H-aldosterone, specific or non-specific binding to protein fractions was not obtained. Further, a 10 000-fold molar excess of aldosterone (10 microM) displaced only 34% of the bound 3H-aldosterone to rat serum, preventing the calculation of the IC50 value. Increasing concentrations of aldosterone (3-83 nM) did not displace 3H-corticosterone bound in rat serum to presumably corticosterone binding globulin (CBG). In contrast, inhibition of this binding by 3-83 nM corticosterone was concentration dependent, showing an IC50 value of 10(-8) M. In normal human serum, binding of 3H-aldosterone demonstrated competition by a 100 and 1 000-fold excess of aldosterone. Displacement curves of 3H corticosterone bound to human serum by 1.7-75 nM corticosterone or 0.05-8.8 microM aldosterone yielded IC50 values in the range of 10(-8) M for corticosterone and 10(-6) M for aldosterone. With horse serum, aldosterone's binding affinity was three orders of magnitude lower than that of corticosterone. These studies suggest that in the rat aldosterone was loosely and weakly bound to a high capacity binder, possibly albumin. In agreement with the work of others, in humans aldosterone may be bound to both CBG and albumin. The current data do not substantiate for the presence of specific aldosterone binding proteins in serum.