{"title":"Forskolin-stimulated cyclic AMP accumulation mediates protein synthesis-dependent refractoriness in C6-2B rat glioma cells.","authors":"K Barovsky, C Pedone, G Brooker","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We have examined the roles that cyclic AMP and protein synthesis play in the development of refractoriness in C6-2B rat glioma cells using the diterpene, forskolin, a general activator of cyclic AMP-generating systems. Forskolin-stimulated cyclic AMP accumulation peaked at 30 min and declined thereafter to 10% of peak levels by 3 hr despite the continued presence of sufficient forskolin to produce 98% of the control response when the incubation medium was transferred to naive cells. C6-2B cells treated for 3 hr with forskolin were refractory to a subsequent challenge with forskolin or isoproterenol. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) increased the degree of refractoriness developed after forskolin treatment. In the presence of IBMX, the induction of refractoriness by forskolin and forskolin-stimulated cyclic AMP accumulation were similarly dependent on forskolin concentration. Pre-treatment with isoproterenol or the cyclic AMP analogue, dibutyryl cyclic AMP, induced refractoriness to forskolin. When C6-2B cells were pre-treated with forskolin plus the protein synthesis inhibitor, cycloheximide, the development of refractoriness to forskolin or isoproterenol was attenuated. Cycloheximide prevented isoproterenol- or dibutyryl cyclic AMP-induced refractoriness to forskolin. These data provide further evidence that the onset of the refractory state in C6-2B cells is mediated by cyclic AMP and is a protein synthesis-requiring process.</p>","PeriodicalId":15406,"journal":{"name":"Journal of cyclic nucleotide and protein phosphorylation research","volume":"9 3","pages":"181-9"},"PeriodicalIF":0.0000,"publicationDate":"1983-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cyclic nucleotide and protein phosphorylation research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have examined the roles that cyclic AMP and protein synthesis play in the development of refractoriness in C6-2B rat glioma cells using the diterpene, forskolin, a general activator of cyclic AMP-generating systems. Forskolin-stimulated cyclic AMP accumulation peaked at 30 min and declined thereafter to 10% of peak levels by 3 hr despite the continued presence of sufficient forskolin to produce 98% of the control response when the incubation medium was transferred to naive cells. C6-2B cells treated for 3 hr with forskolin were refractory to a subsequent challenge with forskolin or isoproterenol. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) increased the degree of refractoriness developed after forskolin treatment. In the presence of IBMX, the induction of refractoriness by forskolin and forskolin-stimulated cyclic AMP accumulation were similarly dependent on forskolin concentration. Pre-treatment with isoproterenol or the cyclic AMP analogue, dibutyryl cyclic AMP, induced refractoriness to forskolin. When C6-2B cells were pre-treated with forskolin plus the protein synthesis inhibitor, cycloheximide, the development of refractoriness to forskolin or isoproterenol was attenuated. Cycloheximide prevented isoproterenol- or dibutyryl cyclic AMP-induced refractoriness to forskolin. These data provide further evidence that the onset of the refractory state in C6-2B cells is mediated by cyclic AMP and is a protein synthesis-requiring process.