D P Cardinali, M I Vacas, P V Gejman, M A Pisarev, M Barontini, R J Boado, G J Juvenal
{"title":"The sympathetic superior cervical ganglia as \"little neuroendocrine brains\".","authors":"D P Cardinali, M I Vacas, P V Gejman, M A Pisarev, M Barontini, R J Boado, G J Juvenal","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The superior cervical ganglia (SCG) provide sympathetic innervation to the pineal gland, cephalic blood vessels, the choroid plexus, the eye, carotid body and the salivary and thyroid glands. Removal of the ganglia brings about several neuroendocrine changes in mammals, including the disruption of water balance in pituitary stalk-sectioned rats and the alteration of normal photoperiodic control of reproduction and thyroid function in hamsters, ferrets, voles, rams and goats. These effects are commonly attributed to pineal denervation. However, pinealectomy does not always mimic ganglionectomy in its neuroendocrine sequelae. This paper discusses several examples illustrating the differences in ganglia and pineal removal, including the acute and chronic effects of ganglionectomy on the control of thyroid response to TSH in rats. A functionally relevant link between SCG and the hypothalamus occurs in rats, inasmuch as ganglionectomy depresses norepinephrine uptake and increases the number and responses of alpha-adrenoceptors in medial basal hypothalamus. Lastly the SCG are active points of concurrency for hormone signals, as revealed by the metabolic changes induced by steroid and anterior pituitary hormones in these structures, even in the absence of intact preganglionic connections, as well as by the existence of putative receptors for some of the hormones, namely estradiol, testosterone and corticosteroids. The SCG appear to constitute a peripheral neuroendocrine center.</p>","PeriodicalId":7131,"journal":{"name":"Acta physiologica latino americana","volume":"33 3","pages":"205-21"},"PeriodicalIF":0.0000,"publicationDate":"1983-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta physiologica latino americana","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The superior cervical ganglia (SCG) provide sympathetic innervation to the pineal gland, cephalic blood vessels, the choroid plexus, the eye, carotid body and the salivary and thyroid glands. Removal of the ganglia brings about several neuroendocrine changes in mammals, including the disruption of water balance in pituitary stalk-sectioned rats and the alteration of normal photoperiodic control of reproduction and thyroid function in hamsters, ferrets, voles, rams and goats. These effects are commonly attributed to pineal denervation. However, pinealectomy does not always mimic ganglionectomy in its neuroendocrine sequelae. This paper discusses several examples illustrating the differences in ganglia and pineal removal, including the acute and chronic effects of ganglionectomy on the control of thyroid response to TSH in rats. A functionally relevant link between SCG and the hypothalamus occurs in rats, inasmuch as ganglionectomy depresses norepinephrine uptake and increases the number and responses of alpha-adrenoceptors in medial basal hypothalamus. Lastly the SCG are active points of concurrency for hormone signals, as revealed by the metabolic changes induced by steroid and anterior pituitary hormones in these structures, even in the absence of intact preganglionic connections, as well as by the existence of putative receptors for some of the hormones, namely estradiol, testosterone and corticosteroids. The SCG appear to constitute a peripheral neuroendocrine center.