{"title":"Modification of the cutaneous vascular response to exercise by local skin temperature.","authors":"W F Taylor, J M Johnson, D S O'Leary, M K Park","doi":"10.1152/jappl.1984.57.6.1878","DOIUrl":null,"url":null,"abstract":"<p><p>This study examined how local forearm temperature (Tloc) affects the responsiveness of the cutaneous vasculature to a reflex drive for vasoconstriction. We observed responses in forearm blood flow (FBF) and arterial blood pressure to a 5-min bout of supine leg exercise of moderate intensity (125-175 W) after the forearm had been locally warmed to 36, 38, 40, or 42 degrees C for 48 min. With exercise, FBF fell by 1.82 +/- 0.23, 4.06 +/- 0.58, and 3.64 +/- 1.48 ml X 100 ml-1 X min-1 at 36, 38, and 40 degrees C, respectively, and rose by 2.16 +/- 0.57 ml X 100 ml X min-1 at a Tloc of 42 degrees C (mean +/- SE). Forearm vascular conductance (FVC) fell with the onset of exercise by averages of 2.77 +/- 0.57, 7.02 +/- 0.51, 5.36 +/- 0.85, and 4.17 +/- 0.79 ml X 100 ml-1 X min-1 X 100 mmHg-1 at 36, 38, 40, and 42 degrees C, respectively. Second-order polynomial regression analysis indicated that the reductions in FVC were greatest near a Tloc of 39 degrees C and that at a Tloc of 40 or 42 degrees C the cutaneous vasoconstrictor response to the onset of exercise is attenuated. Although elevated Tloc can be used to increase base-line FBF levels to make cutaneous vasoconstrictor responses more obvious, the direct effects of Tloc on this response must also be considered. We conclude that the optimum Tloc for observing reflex cutaneous vasoconstriction is near 39 degrees C.</p>","PeriodicalId":15258,"journal":{"name":"Journal of applied physiology: respiratory, environmental and exercise physiology","volume":"57 6","pages":"1878-84"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/jappl.1984.57.6.1878","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology: respiratory, environmental and exercise physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/jappl.1984.57.6.1878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50
Abstract
This study examined how local forearm temperature (Tloc) affects the responsiveness of the cutaneous vasculature to a reflex drive for vasoconstriction. We observed responses in forearm blood flow (FBF) and arterial blood pressure to a 5-min bout of supine leg exercise of moderate intensity (125-175 W) after the forearm had been locally warmed to 36, 38, 40, or 42 degrees C for 48 min. With exercise, FBF fell by 1.82 +/- 0.23, 4.06 +/- 0.58, and 3.64 +/- 1.48 ml X 100 ml-1 X min-1 at 36, 38, and 40 degrees C, respectively, and rose by 2.16 +/- 0.57 ml X 100 ml X min-1 at a Tloc of 42 degrees C (mean +/- SE). Forearm vascular conductance (FVC) fell with the onset of exercise by averages of 2.77 +/- 0.57, 7.02 +/- 0.51, 5.36 +/- 0.85, and 4.17 +/- 0.79 ml X 100 ml-1 X min-1 X 100 mmHg-1 at 36, 38, 40, and 42 degrees C, respectively. Second-order polynomial regression analysis indicated that the reductions in FVC were greatest near a Tloc of 39 degrees C and that at a Tloc of 40 or 42 degrees C the cutaneous vasoconstrictor response to the onset of exercise is attenuated. Although elevated Tloc can be used to increase base-line FBF levels to make cutaneous vasoconstrictor responses more obvious, the direct effects of Tloc on this response must also be considered. We conclude that the optimum Tloc for observing reflex cutaneous vasoconstriction is near 39 degrees C.